Time Series Case Based Reasoning for Image Categorisation

  • Ashraf Elsayed
  • Mohd Hanafi Ahmad Hijazi
  • Frans Coenen
  • Marta García-Fiñana
  • Vanessa Sluming
  • Yalin Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6880)


This paper describes an approach to Case Based Reasoning (CBR) for image categorisation. The technique is founded on a time series analysis mechanism whereby images are represented as time series (curves) and compared using time series similarity techniques. There are a number of ways in which images can be represented as time series, this paper explores two. The first considers the entire image whereby the image is represented as a sequence of histograms. The second considers a particular feature (region of interest) contained across an image collection, which can then be represented as a time series. The proposed techniques then use dynamic time warping to compare image curves contained in a case base with that representing a new image example. The focus for the work described is two medical applications: (i) retinal image screening for Age-related Macular Degeneration (AMD) and (ii) the classification of Magnetic Resonance Imaging (MRI) brain scans according to the nature of the corpus callosum, a particular tissue feature that appears in such images. The proposed technique is described in detail together with a full evaluation in terms of the two applications.


Case Based Reasoning Image Analysis Time Series Analysis Dynamic Time warping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aburto, L., Weber, R.: A Sequential Hybrid Forecasting System for Demand Prediction. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 518–532. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bagnall, A., Janacek, G.: Clustering Time Series with Clipped Data. Machine Learning 58, 151–178 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bichindaritz, I., Marling, C.: Case-based reasoning in the health sciences: What’s next? Artificial Intelligence in Medicine 36(2), 127–135 (2006)CrossRefGoogle Scholar
  4. 4.
    Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of Blood Vessels in Retinal Images using Two-Dimensional Matched Filters. IEEE Transactions on Medical Imaging 8(3), 263–269 (1989)CrossRefGoogle Scholar
  5. 5.
    Conlon, P., Trimble, M.: A Study of the Corpus Callosum in Epilepsy using Magnetic Resonance Imaging. Epilepsy Res. 2, 122–126 (1988)CrossRefGoogle Scholar
  6. 6.
    Cowell, P., Kertesz, A., Denenberg, V.: Multiple Dimensions of Handedness and the Human Corpus Callosum. Neurology 43, 2353–2357 (1993)CrossRefGoogle Scholar
  7. 7.
    Davatzikos, C., Vaillant, M., Resnick, S., Prince, J., Letovsky, S., Bryan, R.: A Computerized Approach for Morphological Analysis of the Corpus Callosum. Journal of Computer Assisted Tomography 20, 88–97 (1996)CrossRefGoogle Scholar
  8. 8.
    Duara, R., Kushch, A., Gross-Glenn, K., Barker, W., Jallad, B., Pascal, S., Loewenstein, D., Sheldon, J., Rabin, M., Levin, B., Lubs, H.: Neuroanatomic Differences Between Dyslexic and Normal Readers on Magnetic resonance Imaging Scans. Archives of Neurology 48, 410–416 (1991)CrossRefGoogle Scholar
  9. 9.
    Elsayed, A., Coenen, F., Jiang, C., García-Fiñana, M., Sluming, V.: Region Of Interest Based Image Classification Using Time Series Analysis. In: IEEE International Joint Conference on Neural Networks, pp. 3465–3470 (2010)Google Scholar
  10. 10.
    Elsayed, A., Coenen, F., Jiang, C., García-Fiñana, M., Sluming, V.: Corpus Callosum MR Image Classification. Knowledge Based Systems 23(4), 330–336 (2010)CrossRefGoogle Scholar
  11. 11.
    Felzenszwalb, P., Huttenlocher, D.: Efficient Graph-based Image Segmentation. Int. Journal of Computer Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  12. 12.
    Hampel, H., Teipel, S., Alexander, G., Horwitz, B., Teichberg, D., Schapiro, M., Rapoport, S.: Corpus Callosum Atrophy is a Possible Indicator of Region and Cell Type-Specific Neuronal Degeneration in Alzheimer Disease. Archives of Neurology 55, 193–198 (1998)CrossRefGoogle Scholar
  13. 13.
    Hijazi, M.H.A., Coenen, F., Zheng, Y.: A Histogram Based Approach to Screening of Age-related Macular Degeneration. In: Proc. of Medical Image Understanding and Analysis (MIUA 2009), pp. 154–158 (2009)Google Scholar
  14. 14.
    Hijazi, M.H.A., Coenen, F., Zheng, Y.: Retinal Image Classification using a Histogram Based Approach. In: IEEE International Joint Conference on Neural Networks, pp. 3501–3507 (2010)Google Scholar
  15. 15.
    Hijazi, M.H.A., Coenen, F., Zheng, Y.: Retinal Image Classification for the Screening of Age-related Macular Degeneration. In: Proceedings of SGAI Conference, pp. 325–338 (2010)Google Scholar
  16. 16.
    Holt, A., Bichindaritz, I., Schmidt, R., Perner, P.: Medical Applications in Case-Based Reasoning. The Knowledge Engineering Review 20, 289–292 (2005)CrossRefGoogle Scholar
  17. 17.
    Hynd, G., Hall, J., Novey, E., Eliopulos, D., Black, K., Gonzalez, J., Edmonds, J., Riccio, C., Cohen, M.: Dyslexia and Corpus Callosum Morphology. Archives of Neurology 52, 32–38 (1995)CrossRefGoogle Scholar
  18. 18.
    Keogh, E., Kasetty, S.: On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration. Data Mining and Knowledge Discovery 7(4), 349–371 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Keogh, E., Pazzani, M.: Scaling up dynamic time warping to massive datasets. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 1–11. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Kolodner, J.L.: Case-based Reasoning. Morgan Kaufmann Series in Representation and Reasoning (1993)Google Scholar
  21. 21.
    Leake, D.B.: Case-based Reasoning: Experiences, Lessons and Future Directions. AAAI Press Co-Publications (1996)Google Scholar
  22. 22.
    Lyoo, I., Satlin, A., Lee, C.K., Renshaw, P.: Regional Atrophy of the Corpus Callosum in Subjects with Alzheimer’s Disease and Multi-infarct Dementia. Psychiatry Research 74, 63–72 (1997)CrossRefGoogle Scholar
  23. 23.
    Mahfouz, A.E., Fahmy, A.S.: Ultrafast Localization of the Optic Disc using Dimensionality Reduction of the Search Space. In: Medical Image Computing and Computer Assisted Intervention, pp. 985–992 (2009)Google Scholar
  24. 24.
    Morzy, M.: Mining Frequent Trajectories of Moving Objects for Location Prediction. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 667–680. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Pal, S., Aha, D., Gupta, K.: Case-Based Reasoning in Knowledge Discovery and Data Mining. Wiley-Blackwell (in Press, 2011)Google Scholar
  26. 26.
    Riley, J.D., Franklin, D.L., Choi, V., Kim, R.C., Binder, D.K., Cramer, S.C., Lin, J.J.: Altered White Matter Integrity in Temporal Lobe Epilepsy: Association with Cognitive and Clinical Profiles. Epilepsia 42(4), 536–545 (2010)CrossRefGoogle Scholar
  27. 27.
    Sakoe, H., Chiba, S.: Dynamic Programming Algorithm Optimization for Spoken Word Recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26(1), 43–49 (1978)CrossRefzbMATHGoogle Scholar
  28. 28.
    Salat, D., Ward, A., Kaye, J., Janowsky, J.: Sex Differences in the Corpus Callosum with Aging. Journal of Neurobiology of Aging 18, 191–197 (1997)CrossRefGoogle Scholar
  29. 29.
    Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal Vessel Segmentation using the 2-D Gabor Wavelet and Supervised Classification. IEEE Transactions on Medical Imaging 25, 1214–1222 (2006)CrossRefGoogle Scholar
  30. 30.
    Weber, B., Luders, E., Faber, J., Richter, S., Quesada, C.M., Urbach, H., Thompson, P.M., Toga, A.W., Elger, C.E., Helmstaedter, C.: Distinct Regional Atrophy in the Corpus Callosum of Patients with temporal Lobe Epilepsy. Brain 130, 3149–3154 (2007)CrossRefGoogle Scholar
  31. 31.
    Weis, S., Kimbacher, M., Wenger, E., Neuhold, A.: Morphometric Analysis of the Corpus Callosum using MRI: Correlation of Measurements with Aging in Healthy Individuals. American Journal of Neuroradiology 14, 637–645 (1993)Google Scholar
  32. 32.
    Youssif, A.A.-H., Ghalwash, A.Z., Ghoneim, A.A.A.A.-R.: Optic Disc Detection from Normalized Digital Fundus Images by Means of A Vessel’s Direction matched Filter. IEEE Transactions on Medical Imaging 27, 11–18 (2008)CrossRefGoogle Scholar
  33. 33.
    Zuiderveld, K.: Contrast Limited Adaptive Histogram Equalization. Academic Press Graphics Gems Series, pp. 474–485 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ashraf Elsayed
    • 1
  • Mohd Hanafi Ahmad Hijazi
    • 1
    • 5
  • Frans Coenen
    • 1
  • Marta García-Fiñana
    • 2
  • Vanessa Sluming
    • 3
  • Yalin Zheng
    • 4
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Centre for Medical Statistics and Health EvaluationUniversity of LiverpoolLiverpoolUK
  3. 3.School of Health SciencesUniversity of LiverpoolLiverpoolUK
  4. 4.Department of Eye and Vision Science, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
  5. 5.School of Engineering and Information TechnologyUniversiti Malaysia SabahKota KinabaluMalaysia

Personalised recommendations