Advertisement

Integration of Sequence Learning and CBR for Complex Equipment Failure Prediction

  • Marc Compta
  • Beatriz López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6880)

Abstract

In this paper we present a methodology based on combining sequence learning and case-based reasoning. This methodology has been applied in the analysis, mining and recognition of sequential data provided by complex systems with the aim of anticipating failures. Our objective is to extract valuable sequences from log data and integrate them on a case-based reasoning system in order to make predictions based on past experiences. We have used an Apriori–style algorithm (CloSpan) to extract patterns from original data. Afterwards, we have extended our own tool (eXiT*CBR) to deal with sequences in a case-based reasoning environment. The results have shown that our methodology anticipated correctly the failures in most of the cases.

Keywords

Sequence Learning Data Mining Sequence Pattern Matching Complex Failure Prediction Medical Application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith-Bindman, R., Lipson, J., Marcus, R., et al.: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. Intern. Med. 169(22), 2078–2086 (2009), doi:10.1001/archinternmed.2009.427CrossRefGoogle Scholar
  2. 2.
    Berrington de González, A., Mahesh, M., Kim, K.P., et al.: Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch. Intern. Med. 169(22), 2071–2077 (2009)CrossRefGoogle Scholar
  3. 3.
    Agrawal, R., Srikant, R.: Fast algorithm for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data bases, VLDB, Santiago, Chile, pp. 487–499 (September 1994)Google Scholar
  4. 4.
    Pei, J., Han, J., et al.: PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th International Conference on Data Engineering, ICDE, Heidelberg, Germany, pp. 215–224 (2001)Google Scholar
  5. 5.
    Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Mining Sequential Patterns by Pattern-growth: The PrefixSpan Approach. IEEE Transactions on Knowledge and Data Engineering 16(11), 1424–1440 (2004)CrossRefGoogle Scholar
  6. 6.
    Yan, X., Han, J., Afshar, R.: CloSpan: Mining Closed Sequential Patterns in Large Datasets. In: Proceedings of 2003 SIAM International Conf. Data Mining, SDM 2003 (2003)Google Scholar
  7. 7.
    Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    McCallum, A., Freitag, D., Pereira, F.: Maximum Entropy Markov Models for Information Extraction and Segmentation. In: Proceedings of the Seventeenth International Conference on Machine Learning (ICML), pp. 591–598 (2000)Google Scholar
  9. 9.
    Jensen, S., Boley, D., Gini, M., Shrater, P.: Rapid On-line Temporal Sequence Prediction by an Adaptive Agent. In: Proc. of the Fourth International Conference on Autonomous Agents and Multi-Agent Systems, pp. 67–73 (2005)Google Scholar
  10. 10.
    Box, G., Jenkins, G.:Time Series Analysis: forecasting and control. Holden Day (1976)Google Scholar
  11. 11.
    Pous, C., Gay, P., Pla, A., Brunet, J., Sanz, J., Ramon y Cajal, T., López, B.: Modeling Reuse on Case-Based Reasoning with Application to Breast Cancer Diagnosis. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 322–332. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    López, B., Pous, C., Pla, A., Gay, P., Sanz, J., Brunet, J.: eXiT*CBR: A framework for case-based medical diagnosis development and experimentation. Artificial Intelligence in Medicine 51, 81–91 (2011)CrossRefGoogle Scholar
  13. 13.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874 (2006)CrossRefGoogle Scholar
  14. 14.
    Yan, X.: Clospan: Closed Sequential Pattern Mining Package, http://www.cs.ucsb.edu/~xyan/software/Clospan.htm (accessed March 30, 2011)
  15. 15.
    Martin, F.J.: Case-Based Sequence Analysis in Dynamic, Imprecise, and Adversarial Domains. PhDThesis, Universitat Politènica de Catalunya (2004)Google Scholar
  16. 16.
    Lane, T., Brodley, C.E.: Temporal Sequence Learning and Data Reduction for Anomaly Detection. ACM Transactions on Information and System Security 2(3), 295–331 (1999)CrossRefGoogle Scholar
  17. 17.
    Cox, M.T.: Loose Coupling of Failure Explanation and Repair: Using Learning Goals to Sequence Learning Methods. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 425–434. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Funk, P., Xiong, N.: Case-based reasoning and knowledge discovery in medical applications with time series. Computational Intelligence 22(3/4), 238–253 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gamero, F.I., Meléndez, J., Colomer, J.: QSSI: A new similarity index for qualitative time series. Applciation to classify voltage sags. Applied Artificial Intelligence 25(2), 141–162 (2011)CrossRefGoogle Scholar
  20. 20.
    Purvis, L., Pu, P.: COMPOSER: A case-based reasoning system for engineering design. Robotica 16(3), 285–295 (1998)CrossRefGoogle Scholar
  21. 21.
    Pajula, E., Seuranen, T., Hurme, M.: Selection of separation sequences by case-based reasoning. Computer-Aided Chemical Engineering 9, 469–474 (2001)CrossRefGoogle Scholar
  22. 22.
    Su, Q.: Applying case-based reasoning in assembly sequence planning. International Journal of Production Research 45(1), 29–47 (2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    Pu, P., Reschberger, M.: Assembly sequence planning using case-based reasoning techniques. Knowledge-Based Systems 4(3), 1123–1130 (1991)CrossRefGoogle Scholar
  24. 24.
    Zirkel, W., Wirtz, G.: A Process for Identifying Predictive Correlations Patterns. In: 7th International Conference on Service Management Systems Service Systems and Service Management (ICSSSM), pp. 1–6 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marc Compta
    • 1
  • Beatriz López
    • 1
  1. 1.University of GironaGironaSpain

Personalised recommendations