Representation, Indexing, and Retrieval of Biological Cases for Biologically Inspired Design

  • Bryan Wiltgen
  • Ashok K. Goel
  • Swaroop Vattam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6880)


Biologically inspired design is an increasingly popular design paradigm. Biologically inspired design differs from many traditional case-based reasoning tasks because it employs cross-domain analogies. The wide differences in biological source cases and technological target problems present challenges for determining what would make good or useful schemes for case representation, indexing, and adaptation. In this paper, we provide an information-processing analysis of biologically inspired design, a scheme for representing knowledge of designs of biological systems, and a computational technique for automatic indexing and retrieval of biological analogues of engineering problems. Our results highlight some important issues that a case-based reasoning system must overcome to succeed in supporting biologically inspired design.


Analogical design analogical reasoning biologically inspired design biomimicry case-based creativity case-based design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Cohen, Y. (ed.): Biomimetics: Biologically Inspired Technologies. Taylor & Francis, Abington (2006)Google Scholar
  2. 2.
    Benyus, J.: Biomimicry: Innovation Inspired by Nature. William Morrow (1997) Google Scholar
  3. 3.
    Vincent, J., Mann, D.: Systematic Transfer from Biology to Engineering. Philosophical Transactions of the Royal Society of London 360, 159–173 (2002)CrossRefGoogle Scholar
  4. 4.
    Yen, J., Weissburg, M.: Perspectives on biologically inspired design: Introduction to the collected contributions. Journal of Bioinspiration and Biomimetics 2 (2007) Google Scholar
  5. 5.
    Ashley, S.: Bumpy flying. Scalloped flippers of whales could reshape wings. Scientific American 291(2), 18–20 (2004)CrossRefGoogle Scholar
  6. 6.
    Fish, F.: Imaginative solutions by marine organisms for drag reduction. In: Meng, J. (ed.) Procs. International Symposium on Seawater Drag Reduction, pp. 443–450. Office of Naval Research, Newport (1998)Google Scholar
  7. 7.
    Fish, F., Battle, J.: Hydrodynamic design of the humpback whale flipper. Journal of Morphology 225, 51–60 (1995)CrossRefGoogle Scholar
  8. 8.
    Reisbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Lawrence Erlbaum Associates, Hillsdale (1989)Google Scholar
  9. 9.
    Kolodner, J.: Case-Based Reasoning. Morgan Kauffman, San Francisco (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Navinchandra, D.: Case-Based Reasoning in CYCLOPS: A Design Problem Solver. In: First DARPA Workshop on Case-Based Reasoning. Morgan Kaufman Publishers, San Francisco (1988)Google Scholar
  11. 11.
    Navinchandra, D.: Exploration and Innovation in Design. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Maher, M., Zhao, F.: Using Experiences to Plan the Synthesis of New Designs. In: Gero, J. (ed.) Expert Systems in Computer-Aided Design, pp. 349–369. North-Holland, Amsterdam (1986)Google Scholar
  13. 13.
    Zhao, F., Maher, M.: Using Analogical Reasoning to Design Buildings. Engineering with Computers 4, 107–122 (1988)CrossRefGoogle Scholar
  14. 14.
    Huhns, M., Acosta, E.: Argo: A System for Design by Analogy. IEEE Expert 3(3), 53–68 (1988)CrossRefGoogle Scholar
  15. 15.
    Goel, A., Chandrasekaran, B.: Integrating Case-Based and Model-Based Reasoning for Design Problem Solving. In: AAAI 1988 Workshop on Design, St. Paul, Minnesota (1988) Google Scholar
  16. 16.
    Goel, A., Chandrasekaran, B.: Case-Based Design: A Task Analysis. In: Tong, C., Sriram, D. (eds.) Artificial Intelligence Approaches to Engineering Design. Innovative Design, vol. II, pp. 165–184. Academic Press, San Diego (1992)CrossRefGoogle Scholar
  17. 17.
    Goel, A.: Representation of Design Functions in Experience-Based Design. In: Brown, D., Waldron, M., Yoshikawa, H. (eds.) Intelligent Computer Aided Design, pp. 283–308. North-Holland, Amsterdam (1992)Google Scholar
  18. 18.
    Maher, M.L., Gomez, A.: Case-Based Reasoning in Design. IEEE Expert 12(2), 34–41 (1997)CrossRefGoogle Scholar
  19. 19.
    Maher, M., Pu, P. (eds.): Issues and Applications of Case-Based Reasoning in Design. Lawrence Erlbaum Associates, Mahwah (1997)Google Scholar
  20. 20.
    Pearce, M., Goel, A., Kolodner, J., Zimring, C., Sentosa, L., Billington, R.: Case-based decision support: a case study in architectural design. IEEE Expert 7(5), 14–20 (1992)CrossRefGoogle Scholar
  21. 21.
    Sycara, K., Guttal, R., Koning, J., Narasimhan, S., Navinchandra, D.: CADET: a case-based synthesis tool for engineering design. International Journal of Expert Systems 4(2), 157–188 (1991)Google Scholar
  22. 22.
    Gebhardt, F., Voß, A., Gräther, W., Schmidt-Belz, B.: Reasoning with Complex Cases. Kluwer, Norwell (1997)CrossRefzbMATHGoogle Scholar
  23. 23.
    Börner, K., Coulon, C., Pippig, G., Tammer, E.C.: Structural similarity and adaptation. In: Smith, I., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  24. 24.
    Smith, I., Lottaz, C., Faltings, I.: Spatial Composition Using Cases: IDIOM. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 88–97. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  25. 25.
    Hua, K., Faltings, B., Smith, I.: CADRE: Case-Based Geometric Design. Artificial Intelligence in Engineering 10(2), 171–183 (1996)CrossRefGoogle Scholar
  26. 26.
    Louis, S.: Working from Blueprints: Evolutionary Learning in Design. Artificial Intelligence in Engineering 11(3), 335–341 (1997)CrossRefGoogle Scholar
  27. 27.
    Gómez de Silva Garza, A., Maher, M.L.: An evolutionary approach to case adaption. In: Third International Conference on Case-Based Reasoning, pp. 162–172. Springer, Berlin (1999)Google Scholar
  28. 28.
    Maher, M.L., Balachandran, B., Zhang, D.M.: Case-based Reasoning in Design. Lawrence Erlbaum Associates, Hillsdale (1995)Google Scholar
  29. 29.
    Smyth, B., Keane, M.: Design à la Déjà Vu: reducing the adaptation overhead. In: Leake, D.B. (ed.) Case-Based Reasoning: Experiences, Lessons and Future Directions, pp. 151–166. AAAI Press/The MIT Press, Menlo Park, CA (1996)CrossRefGoogle Scholar
  30. 30.
    Pu, P., Reschberger, M.: Assembly Sequence Planning Using Case-Based Reasoning Techniques. Knowledge-Based Systems 4(3), 123–130 (1991)CrossRefGoogle Scholar
  31. 31.
    Bhansali, S., Harandi, M.: Synthesis of UNIX Programs Using Derivational Analogy. Machine Learning 10, 7–55 (1993)Google Scholar
  32. 32.
    Barber, J., Bhatta, S., Goel, A., Jacobson, M., Pearce, M., Penberthy, L., Shankar, M., Simpson, R., Stroulia, E.: AskJef: integration of case-based and multimedia technologies for interface design support. In: Gero, J.S. (ed.) Artificial Intelligence in Design 1992, pp. 457–474. Kluwer, Dordrecht (1992)Google Scholar
  33. 33.
    Goel, A., Craw, S.: Design, Innovation and Case-Based Reasoning. Knowledge Engineering Review 20(3), 271–276 (2005)CrossRefGoogle Scholar
  34. 34.
    Gross, M., Do, E.: Drawing on the Back of an Envelope: a framework for interacting with application programs by freehand drawing. Computers & Graphics 24(6), 835–849 (2000)CrossRefGoogle Scholar
  35. 35.
    Yaner, P., Goel, A.: Visual Analogy: Viewing Retrieval and Mapping as Constraint Satisfaction. Journal of Applied Intelligence 25(1), 91–105 (2006)CrossRefzbMATHGoogle Scholar
  36. 36.
    Davies, J., Goel, A., Nersessian, N.: A Computational Model of Visual Analogies in Design. Journal of Cognitive Systems Research, Special Issue on Analogies - Integrating Cognitive Abilities 10, 204–215 (2009)Google Scholar
  37. 37.
    Vattam, S., Helms, M., Goel, A.: Biologically Inspired Design: A Macrocognitive Account. In: 2010 ASME IDETC/CIE Conference on Design Theory and Methods, Montreal, Canada (August 2010) Google Scholar
  38. 38.
    Fisher, Maher (eds.): Proceedings of AAAI Spring Symposium on AI and Sustainable Design. Stanford University, Stanford (March 2011)Google Scholar
  39. 39.
    Biomimicry Institute. Ask Nature – The Biomimicty Design Portal,
  40. 40.
    Chakrabarti, A., Sarkar, P., Leelavathamma, B., Nataraju, B.: A functional representation for aiding biomimetic and artificial inspiration of new ideas. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 19, 113–132 (2005)CrossRefGoogle Scholar
  41. 41.
    Vattam, S., Wiltgen, B., Helms, M., Goel, A., Yen, J.: DANE: Fostering Creativity in and through Biologically Inspired Design. In: First International Conference on Design Creativity, Kobe, Japan (November 2010) Google Scholar
  42. 42.
    Goel, A., Rugaber, S., Vattam, S.: Structure, Behavior & Function of Complex Systems: The Structure-Behavior-Function Modeling Language. AI for Engineering Design, Analysis and Manufacturing 23, 23–35 (2009)Google Scholar
  43. 43.
    Thagard, P., Holyoak, K.J., Nelson, G., Gochfeld, D.: Analog retrieval by constraint satisfaction. Artificial Intelligence 46, 259–310 (1990)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Forbus, K., Gentner, D., Law, K.: MAC/FAC: A model of Similarity-based Retrieval. Cognitive Science 19(2), 141–205 (1995)CrossRefGoogle Scholar
  45. 45.
    Feigenbaum, E., Simon, H.: EPAM-like models of recognition and learning. Cognitive Science 8, 305–336 (1994)CrossRefGoogle Scholar
  46. 46.
    Bhatta, S., Goel, A.: Model-Based Indexing and Index Learning in Engineering Design. International Journal of Engineering Applications of Artificial Intelligence 9(6), 601–610 (1996)CrossRefGoogle Scholar
  47. 47.
    Bhatta, S., Goel, A.: Learning Generic Mechanisms for Innovative Strategies in Adaptive Design. Journal of Learning Sciences 6(4), 367–396 (1997)CrossRefGoogle Scholar
  48. 48.
    Tversky, A.: Features of Similarity. Psychological Review 84(4), 327–352 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bryan Wiltgen
    • 1
  • Ashok K. Goel
    • 1
    • 2
  • Swaroop Vattam
    • 1
  1. 1.Design & Intelligence Laboratory, School of Interactive ComputingGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Center for Biologically Inspired DesignGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations