Using Personality to Create Alliances in Group Recommender Systems

  • Lara Quijano-Sánchez
  • Juan A. Recio Garcia
  • Belén Díaz-Agudo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6880)

Abstract

Our recent work analyses the accuracy of group recommenders when using information about the personality and the social connections between the members of the group. The goal in this paper is the use of personality and trust as the mean to define alliances to reach agreements inside a group of people. The approach reproduces the behaviour of real users when negotiating a common item to consume using three variables: personality, trust and personal preferences. We run an experiment in the movie recommendation domain where we use a personality test to identify the group leaders and test the number of people they are able to convince about a certain item to consume.

Keywords

Multiagent System Aggregation Function Case Base Reasoning Coalition Structure Trust Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender systems. Knowledge Engineering Review 20, 315–320 (2006)CrossRefGoogle Scholar
  2. 2.
    Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Recio-García, J.A., Jimenez-Diaz, G., Sánchez-Ruiz, A.A., Díaz-Agudo, B.: Personality aware recommendations to groups. In: Procs. of the 2009 ACM Conference on Recommender Systems, pp. 325–328. ACM, New York (2009)Google Scholar
  4. 4.
    Quijano-Sánchez, L., Recio-García, J.A., Díaz-Agudo, B.: Personality and social trust in group recommendations. In: Procs. of the 22th Int. Conference on Tools with Artificial Intelligence, ICTAI 2010, pp. 121–126. IEEE Computer Society, Los Alamitos (2010)CrossRefGoogle Scholar
  5. 5.
    Quijano-Sánchez, L., Recio-García, J., Díaz-Agudo, B., Jiménez-Díaz, G.: Social factors in group recommender systems. In: ACM-TIST, TIST-2011-01-0013 (in press, 2011)Google Scholar
  6. 6.
    Quijano-Sánchez, L., Recio-García, J.A., Díaz-Agudo, B., Jiménez-Díaz, G.: Happy movie: A group recommender application in facebook. In: 24th International Florida Artificial Intelligence Research Society Conference, FLAIRS 2011 (2011)Google Scholar
  7. 7.
    Masthoff, J., Gatt, A.: In pursuit of satisfaction and the prevention of embarrassment: affective state in group recommender systems. User Modeling and User-Adapted Interaction 16, 281–319 (2006)CrossRefGoogle Scholar
  8. 8.
    O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: Polylens: a recommender system for groups of users. In: ECSCW 2001: Proceedings of the Seventh Conference on European Conference on Computer Supported Cooperative Work, pp. 199–218. Kluwer Academic Publishers, Norwell (2001)Google Scholar
  9. 9.
    Masthoff, J.: Group modeling: Selecting a sequence of television items to suit a group of viewers. User Modeling and User-Adapted Interaction 14, 37–85 (2004)CrossRefGoogle Scholar
  10. 10.
    Chen, Y.L., Cheng, L.C., Chuang, C.N.: A group recommendation system with consideration of interactions among group members. Expert Syst. Appl. 34, 2082–2090 (2008)CrossRefGoogle Scholar
  11. 11.
    Thomas, K., Kilmann, R.: Thomas-Kilmann Conflict Mode Instrument, Tuxedo, N.Y (1974)Google Scholar
  12. 12.
    Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision, pp. 618–644 (2007)Google Scholar
  13. 13.
    Levin, D.Z., Cross, R., Abrams, L.C.: The strength of weak ties you can trust: the mediating role of trust in effective knowledge transfer. Management Science 50, 1477–1490 (2004)CrossRefGoogle Scholar
  14. 14.
    Miller Mcpherson, L.S.L., Cook, J.M.: Birds of a feather: Homophily in social networks, pp. 415–444 (2001)Google Scholar
  15. 15.
    Lazarsfeld, P., Merton, R.: Friendship as a social process: A substantive and methodological analysis. In: Berger, M., Abel, T., Page, C. (eds.) Freedom and Control in Modern Society, pp. 18–66. Van Nostrand, New York (1954)Google Scholar
  16. 16.
    Gladwell, M.: The tipping point: How little things canmake a big difference. Little Brown, Boston (2000)Google Scholar
  17. 17.
    Burt, R.S.: Toward a structural theory of action: Network models of social structure, perception and action, pp. 1336–1338 (1982)Google Scholar
  18. 18.
    McPherson, M., Smith-Lovin, L.: Homophily in voluntary organizations: Status distance and the composition of face-to-face groups, pp. 370–379 (1987)Google Scholar
  19. 19.
    Chalkiadakis, G., Elkind, E., Markakis, E., Polukarov, M., Jennings, N.R.: Cooperative games with overlapping coalitions. J. Artif. Intell. Res. (JAIR) 39, 179–216 (2010)MathSciNetMATHGoogle Scholar
  20. 20.
    Barton, L., Allan, V.H.: Methods for coalition formation in adaptation-based social networks. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA 2007. LNCS (LNAI), vol. 4676, pp. 285–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Airiau, S., Sen, S.: On the stability of an optimal coalition structure. In: Proceedings of 19th European Conference on Artificial Intelligence, ECAI 2010, Lisbon, Portugal, August 16-20, pp. 203–208 (2010)Google Scholar
  22. 22.
    Nuno, D., Ao, S.J.S., Helder, C.: Agent-based social simulation with coalitions in social reasoning. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI), vol. 1979, pp. 244–265. Springer, Heidelberg (2001)Google Scholar
  23. 23.
    Elkind, E., Chalkiadakis, G., Jennings, N.R.: Coalition structures in weighted voting games. In: 18th European Conference on Artificial Intelligence, ECAI 2008. Frontiers in Artificial Intelligence and Applications, vol. 178, pp. 393–397. IOS Press, Amsterdam (2008)Google Scholar
  24. 24.
    McGinty, L., Smyth, B.: Collaborative case-based reasoning: Applications in personalised route planning. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 362–376. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Ontañón, S., Plaza, E.: An argumentation-based framework for deliberation in multi-agent systems. In: Rahwan, I., Parsons, S., Reed, C. (eds.) Argumentation in Multi-Agent Systems. LNCS (LNAI), vol. 4946, pp. 178–196. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Sinha, R.R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries (2001)Google Scholar
  27. 27.
    Recio-García, J.A., Díaz-Agudo, B., González-Calero, P.A.: Prototyping Recommender Systems in jCOLIBRI. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 243–250. ACM, NY (2008)CrossRefGoogle Scholar
  28. 28.
    Bobadilla, J., Serradilla, F., Hernando, A.: Collaborative filtering adapted to recommender systems of e-learning. Knowl.-Based Syst. 22, 261–265 (2009)CrossRefGoogle Scholar
  29. 29.
    Díaz-Agudo, B., González-Calero, P.A., Recio-García, J.A., Sánchez-Ruiz-Granados, A.A.: Building cbr systems with jcolibri. Sci. Comput. Program. 69, 68–75 (2007)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Oard, D.W., Baron, J.R., Hedin, B., Lewis, D.D., Tomlinson, S.: Evaluation of information retrieval for e-discovery. Artif. Intell. Law 18, 347–386 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lara Quijano-Sánchez
    • 1
  • Juan A. Recio Garcia
    • 1
  • Belén Díaz-Agudo
    • 1
  1. 1.Dep. Ingeniería del Software e Inteligencia ArtificialUniversidad Complutense de MadridSpain

Personalised recommendations