On Characterization, Definability and ω-Saturated Models

  • Facundo Carreiro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6916)

Abstract

Two important classic results about modal expressivity are the Characterization and Definability theorems. We develop a general theory for modal logics below first order (in terms of expressivity) which exposes the following result: Characterization and Definability theorems hold for every (reasonable) modal logic whose ω models have the Hennessy-Milner property. The results are presented in a general version which is relativized to classes of models.

Keywords

Modal Logic Temporal Logic Kripke Model Modal Language Order Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  2. 2.
    Kamp, H.: Tense Logic and the Theory of Linear Order. PhD thesis, University of Califormia, Los Angeles (1968)Google Scholar
  3. 3.
    Goranko, V., Passy, S.: Using the universal modality: Gains and questions. Journal of Logic and Computation 2(1), 5–30 (1992)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    de Rijke, M.: The modal logic of inequality. Journal of Symbolic Logic 57, 566–584 (1992)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27(3), 333–354 (1983)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst. 31(4), 1–41 (2009)CrossRefMATHGoogle Scholar
  7. 7.
    van Benthem, J.: Modal Correspondence Theory. PhD thesis, Universiteit van Amsterdam, Instituut voor Logica en Grondslagenonderzoek van Exacte Wetenschappen (1976)Google Scholar
  8. 8.
    Chang, C.C., Keisler, H.J.: Model Theory. Studies in Logic and the Foundations of Mathematics, vol. 73. Elsevier Science B.V., Amsterdam (1973)MATHGoogle Scholar
  9. 9.
    Kurtonina, N., de Rijke, M.: Simulating without negation. Journal of Logic and Computation 7, 503–524 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kurtonina, N., de Rijke, M.: Bisimulations for temporal logic. Journal of Logic, Language and Information 6, 403–425 (1997)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Keisler, H.J.: The ultraproduct construction. In: Proceedings of the Ultramath Conference, Pisa, Italy (2008)Google Scholar
  12. 12.
    Hansen, H.H.: Monotonic modal logics. Master’s thesis, ILLC, University of Amsterdam (2003)Google Scholar
  13. 13.
    Carreiro, F.: Characterization and definability in modal first-order fragments. Master’s thesis, Universidad de Buenos Aires (2010), arXiv:1011.4718Google Scholar
  14. 14.
    Areces, C., Figueira, D., Figueira, S., Mera, S.: Expressive power and decidability for memory logics. In: Hodges, W., de Queiroz, R. (eds.) Logic, Language, Information and Computation. LNCS (LNAI), vol. 5110, pp. 56–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Areces, C., Figueira, D., Figueira, S., Mera, S.: The expressive power of memory logics. Review of Symbolic Logic (to appear)Google Scholar
  16. 16.
    Rosen, E.: Modal logic over finite structures. Journal of Logic, Language and Information 6, 95–27 (1995)Google Scholar
  17. 17.
    Kurtonina, N., de Rijke, M.: Classifying description logics. In: Brachman, R.J., Donini, F.M., Franconi, E., Horrocks, I., Levy, A.Y., Rousset, M.C. (eds.) Description Logics. URA-CNRS, vol. 410 (1997)Google Scholar
  18. 18.
    Otto, M.: Elementary proof of the van Benthem-Rosen characterisation theorem. Technical Report 2342, Department of Mathematics, Technische Universität Darmstadt (2004)Google Scholar
  19. 19.
    Hollenberg, M.: Logic and Bisimulation. PhD thesis, Philosophical Institute, Utrecht University (1998)Google Scholar
  20. 20.
    Areces, C., Gorín, D.: Coinductive models and normal forms for modal logics. Journal of Applied Logic (2010) (to appear)Google Scholar
  21. 21.
    Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3. Elsevier Science Inc., New York (2006)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Facundo Carreiro
    • 1
  1. 1.Dto. de ComputaciónFCEyN, Universidad de Buenos AiresArgentina

Personalised recommendations