Formal Verification of a Lock-Free Stack with Hazard Pointers

  • Bogdan Tofan
  • Gerhard Schellhorn
  • Wolfgang Reif
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6916)

Abstract

A significant problem of lock-free concurrent data structures in an environment without garbage collection is to ensure safe memory reclamation of objects that are removed from the data structure. An elegant solution to this problem is Michael’s hazard pointers method. The formal verification of concurrent algorithms with hazard pointers is yet challenging. This work presents a mechanized proof of the major correctness and progress aspects of a lock-free stack with hazard pointers.

Keywords

Garbage Collection Proof Obligation Symbolic Execution Interval Temporal Logic Concurrent Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Massalin, H., Pu, C.: A lock-free multiprocessor os kernel. Technical Report CUCS-005-91, Columbia University (1991)Google Scholar
  2. 2.
    Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent objects. ACM Trans. on Prog. Languages and Systems 12(3), 463–492 (1990)CrossRefGoogle Scholar
  3. 3.
    Treiber, R.K.: System programming: Coping with parallelism. Technical Report RJ 5118, IBM Almaden Research Center (1986)Google Scholar
  4. 4.
    Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects. IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)CrossRefGoogle Scholar
  5. 5.
    Parkinson, M., Bornat, R., O’Hearn, P.: Modular verification of a non-blocking stack. SIGPLAN Not. 42(1), 297–302 (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction—A Basis for Applications. Systems and Implementation Techniques, vol. II, pp. 13–39. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  7. 7.
    Tofan, B., Schellhorn, G., Reif, W.: Verifying a stack with hazard pointers in temporal logic. Technical Report 2011-08, Universität Augsburg (2011), http://opus.bibliothek.uni-augsburg.de/volltexte/2011/1717/
  8. 8.
    KIV. Presentation of proofs for concurrent algorithms (2011), http://www.informatik.uni-augsburg.de/swt/projects/lock-free.html
  9. 9.
    Moszkowski, B.: Executing Temporal Logic Programs. Cambr. Univ. Press, Cambridge (1986)MATHGoogle Scholar
  10. 10.
    de Roever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncompositional Methods. Cambridge Tracts in Theoretical Computer Science, vol. 54. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  11. 11.
    Burstall, R.M.: Program proving as hand simulation with a little induction. Information Processing 74, 309–312 (1974)MATHGoogle Scholar
  12. 12.
    Bäumler, S., Balser, M., Nafz, F., Reif, W., Schellhorn, G.: Interactive verification of concurrent systems using symbolic execution. AI Communications 23(2,3), 285–307 (2010)MathSciNetMATHGoogle Scholar
  13. 13.
    Schellhorn, G., Tofan, B., Ernst, G., Reif, W.: Interleaved programs and rely-guarantee reasoning with ITL. In: Proc. of TIME. IEEE, CPS (to appear, 2011)Google Scholar
  14. 14.
    Bäumler, S., Schellhorn, G., Tofan, B., Reif, W.: Proving linearizability with temporal logic. In: Formal Aspects of Computing (FAC) (2009), appeared online first http://www.springerlink.com/content/7507m59834066h04/
  15. 15.
    Tofan, B., Bäumler, S., Schellhorn, G., Reif, W.: Temporal logic verification of lock-freedom. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 377–396. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of IFIP 1983, pp. 321–332. North-Holland, Amsterdam (1983)Google Scholar
  17. 17.
    Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Fu, M., Li, Y., Feng, X., Shao, Z., Zhang, Y.: Reasoning about optimistic concurrency using a program logic for history. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 388–402. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisabilty with potential linearisation points. In: Proc. Formal Methods (to appear, 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bogdan Tofan
    • 1
  • Gerhard Schellhorn
    • 1
  • Wolfgang Reif
    • 1
  1. 1.Institute for Software and Systems EngineeringUniversity of AugsburgGermany

Personalised recommendations