Muscarinic Agonists and Antagonists: Effects on the Urinary Bladder

Part of the Handbook of Experimental Pharmacology book series (HEP, volume 208)


Voiding of the bladder is the result of a parasympathetic muscarinic receptor activation of the detrusor smooth muscle. However, the maintenance of continence and a normal bladder micturition cycle involves a complex interaction of cholinergic, adrenergic, nitrergic and peptidergic systems that is currently little understood. The cholinergic component of bladder control involves two systems, acetylcholine (ACh) released from parasympathetic nerves and ACh from non-neuronal cells within the urothelium. The actions of ACh on the bladder depend on the presence of muscarinic receptors that are located on the detrusor smooth muscle, where they cause direct (M3) and indirect (M2) contraction; pre-junctional nerve terminals where they increase (M1) or decrease (M4) the release of ACh and noradrenaline (NA); sensory nerves where they influence afferent nerve activity; umbrella cells in the urothelium where they stimulate the release of ATP and NO; suburothelial interstitial cells with unknown function; and finally, other unidentified sites in the urothelium from where prostaglandins and inhibitory/relaxatory factors are released. Thus, the actions of muscarinic receptor agonists and antagonists on the bladder may be very complex even when considering only local muscarinic actions. Clinically, muscarinic antagonists remain the mainstay of treatment for the overactive bladder (OAB), while muscarinic agonists have been used to treat hypoactive bladder. The antagonists are effective in treating OAB, but their precise mechanisms and sites of action (detrusor, urothelium, and nerves) have yet to be established. Potentially more selective agents may be developed when the cholinergic systems within the bladder are more fully understood.


Afferent nerves Detrusor Muscarinic agonist Muscarinic antagonist Muscarinic receptor subtypes Urinary bladder Urothelium 


  1. Abrams P, Andersson KE (2007) Muscarinic receptor antagonists for overactive bladder. BJU Int 100:987–1006PubMedCrossRefGoogle Scholar
  2. Abrams P, Shah PJR, Feneley RCL (1981) Voiding disorders in the young male adult. Urology 18:107–113PubMedCrossRefGoogle Scholar
  3. Abrams P, Cardozo L, Fall M et al (2003) The standardisation of terminology of lower urinary tract function: report from the standardisation sub-committee of the International Continence Society. Urology 61:37–49PubMedCrossRefGoogle Scholar
  4. Abrams P, Andersson KE, Birder L, Brubaker L, Cardozo L, Chapple C et al (2010) Fourth International Consultation on Incontinence Recommendations of the International Scientific Committee: evaluation and treatment of urinary incontinence, pelvic organ prolapse, and fecal incontinence. Neurourol Urodyn 29:213–240PubMedCrossRefGoogle Scholar
  5. Anagnostara SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognition dysfunction in acetylcholine m1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58CrossRefGoogle Scholar
  6. Andersson KE (2002) Bladder activation: afferent mechanisms. Urology 59(5 Suppl 1):43–50PubMedCrossRefGoogle Scholar
  7. Andersson KE, Yoshida M (2003) Antimuscarinics and the overactive detrusor – which is the main mechanism of action? Eur Urol 43:1–5PubMedCrossRefGoogle Scholar
  8. Andersson KE, Appell R, Cardozo LD, Chapple C, Drutz HP, Finkbeiner AE, Haab F, Vela Navarrete R (1999) The pharmacological treatment of urinary incontinence. BJU Int 84(9):923–947PubMedCrossRefGoogle Scholar
  9. Athanasopoulos A, Gyftopoulos K, Giannitsas K, Fisfis J, Perimenis P, Barbalias G (2003) Combination treatment with an alpha-blocker plus an anticholinergic for bladder outlet obstruction: a prospective, randomized, controlled study. J Urol 169(6):2253–2256PubMedCrossRefGoogle Scholar
  10. Awad S (1985) Clinical use of bethanechol. J Urol 134:523–524PubMedGoogle Scholar
  11. Banks FCL, Knight GE, Calvert RC, Morgan RJ, Burnstock G (2005) Alterations in purinergic and cholinergic components of contractile responses of isolated detrusor contraction in a rat model of partial bladder outlet obstruction. BJU Int 97:372–378CrossRefGoogle Scholar
  12. Barlow RB, Weston-Smith P (1985) The relative potencies of some agonists at M2 muscarinic receptors in guinea pig ileum, atria and bronchi. Br J Pharmacol 85:437–440PubMedGoogle Scholar
  13. Baselli EC, Brandes SB, Luthin GR, Ruggieri MR (1999) The effect of pregnancy and contractile activity on bladder muscarinic receptor subtypes. Neurourol Urodyn 18(5):511–520PubMedCrossRefGoogle Scholar
  14. Bayliss M, Wu C, Newgreen AR, Mundy CH, Fry CH (1999) A quantitative study of atropine-resistant contractile responses in human bladder detrusor smooth muscle, from stable, unstable and obstructed bladders. J Urol 162:1833–1839PubMedCrossRefGoogle Scholar
  15. Birder LA (2010) Urothelial signaling. Auton Neurosci 153(1–2):33–40PubMedCrossRefGoogle Scholar
  16. Birder LA, Apodaca G, de Groat WC, Kanai AJ (1998) Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. Am J Physiol 275(2 Pt 2):F226–F229PubMedGoogle Scholar
  17. Blake-James BT, Rashidian A, Ikeda Y, Emberton M (2007) The role of anticholinergics in men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia: a systematic review and meta-analysis. BJU Int 99(1):85–96PubMedCrossRefGoogle Scholar
  18. Bolduc S, Moore K, Lebel S, Lamontagne P, Hamel M (2009) Double anticholinergic therapy for refractory overactive bladder. J Urol 182(4 Suppl):2033–2038PubMedCrossRefGoogle Scholar
  19. Boy S, Schurch B, Mehnert U, Mehring G, Karsenty G, Reitz A (2007) The effects of tolterodine on bladder-filling sensations and perception thresholds to intravesical electrical stimulation: method and initial results. BJU Int 100(3):574–578PubMedCrossRefGoogle Scholar
  20. Braverman AS, Kohn IJ, Luthin GR, Ruggieri MR (1998a) Prejunctional M1 facilitory and M2 inhibitory muscarinic receptors mediate rat bladder contractility. Am J Physiol 274:R517–R523PubMedGoogle Scholar
  21. Braverman AS, Luthin GR, Ruggieri MR (1998b) M2 muscarinic receptor contributes to contraction of the denervated rat urinary bladder. Am J Physiol Regul Integr Comp Physiol 275:R1654–R1660Google Scholar
  22. Braverman AS, Doumanian LR, Ruggieri MR (2006b) M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. II. Denervated rat bladder. J Pharmacol Exp Ther 316:875–880PubMedCrossRefGoogle Scholar
  23. Bschleipfer T, Schukowski K, Weidner W, Grando SA, Schwantes U, Kummer W, Lips KS (2007) Expression and distribution of cholinergic receptors in the human urothelium. Life Sci 80:2303–2307PubMedCrossRefGoogle Scholar
  24. Burnstock G (2001) Purinergic signalling in the lower urinary tract. In: Abbracchio MP, Williams M (eds) Handbook of experimental pharmacology. Springer, Berlin, pp 423–515Google Scholar
  25. Burnstock G (2009) Purinergic cotransmission. Exp Physiol 94(1):20–24PubMedCrossRefGoogle Scholar
  26. Canda AE, Chapple CR, Chess-Williams R (2009) Pharmacologic responses of the mouse urinary bladder. Cent Eur J Med 4(2):192–197CrossRefGoogle Scholar
  27. Chancellor MB, Kaplan SA, Blavias JG (1992) The cholinergic and purinergic components of detrusor contractility in a whole rabbit bladder model. J Urol 148:906–909PubMedGoogle Scholar
  28. Chapple CR, Radley SC, Martin SW, Sellers DJ, Chess-Williams R (2004) Serotonin-induced potentiation of cholinergic responses to electrical field stimulation in normal and neurogenic overactive human detrusor muscle. BJU Int 93(4):599–604PubMedCrossRefGoogle Scholar
  29. Chapple CR, Khullar V, Gabriel Z, Muston D, Bitoun CE, Weinstein D (2008) The effects of antimuscarinic treatments in overactive bladder: an update of a systematic review and meta-analysis. Eur Urol 54:543–562PubMedCrossRefGoogle Scholar
  30. Chess-Williams R (2002) Muscarinic receptors of the bladder: detrusor, urothelial and prejunctional. Auton Autocoid Pharmacol 22(3):133–145CrossRefGoogle Scholar
  31. Chess-Williams R, Chapple CR, Yamanishi T, Sellers DJ (2001) The minor population of M3 receptors mediate contraction of human detrusor muscle in vitro. J Auton Pharmacol 21(5–6):243–248PubMedCrossRefGoogle Scholar
  32. Choppin A (2002) Muscarinic receptors in isolated urinary bladder smooth muscle from different mouse strains. Br J Pharmacol 137(4):522–528PubMedCrossRefGoogle Scholar
  33. Choppin A, Eglen RM (2001a) Pharmacological characterization of muscarinic receptors in mouse isolated urinary bladder smooth muscle. Br J Pharmacol 133(7):1035–1040PubMedCrossRefGoogle Scholar
  34. Choppin A, Eglen RM (2001b) Pharmacological characterization of muscarinic receptors in dog ciliary and urinary bladder smooth muscle. Br J Pharmacol 132:835–842PubMedCrossRefGoogle Scholar
  35. Choppin A, Eglen RM, Hedge SS (1998) Pharmacological characterization of muscarinic receptors in rabbit isolated iris sphincter muscle and urinary bladder smooth muscle. Br J Pharmacol 124:883–888PubMedCrossRefGoogle Scholar
  36. D’Agostino G, Bolognesi ML, Lucchelli A, Vicini D, Balestra B, Spelta V, Melchiorre C, Tonini M (2000) Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 receptor subtype. Br J Pharmacol 129:493–500PubMedCrossRefGoogle Scholar
  37. Daly DM, Chess-Williams R, Chapple C, Grundy D (2010) The inhibitory role of acetylcholine and muscarinic receptors in bladder afferent activity. Eur Urol 58(1):22–28PubMedCrossRefGoogle Scholar
  38. de Groat C (1997) A neurologic basis for the overactive bladder. Urology 50 (6A Suppl):36–52; discussion 53–56Google Scholar
  39. de Groat WC (2006) Integrative control of the lower urinary tract: preclinical perspective. Br J Pharmacol 147:S25–S40PubMedCrossRefGoogle Scholar
  40. de Groat WC, Yoshimura N (2010) Changes in afferent activity after spinal cord injury. Neurourol Urodyn 29(1):63–76PubMedCrossRefGoogle Scholar
  41. De Laet K, De Wachter S, Wyndaele JJ (2006) Systemic oxybutynin decreases afferent activity of the pelvic nerve of the rat: new insights into the working mechanism of antimuscarinics. Neurourol Urodyn 25:156–161PubMedCrossRefGoogle Scholar
  42. De Wachter S, Wyndaele JJ (2003) Intravesical oxybutynin: a local anesthetic effect on bladder C afferents. J Urol 169(5):1892–1895PubMedCrossRefGoogle Scholar
  43. Diokno AC, Brock BM, Brown MB et al (1986) Prevalence of urinary incontinence and other urological symptoms in the non-institutionalized elderly. J Urol 136:1022–1025PubMedGoogle Scholar
  44. Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsui M (2005) The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther 313(1):368–378PubMedCrossRefGoogle Scholar
  45. Elbadawi A, Yalla SV, Resnick NM (1993) Structural basis of geriatric voiding dysfunction. II Aging detrusor: normal versus impaired contractility. J Urol 150:1657–1667PubMedGoogle Scholar
  46. Fabiyi AC, Brading AF (2006) The use of the isolated mouse whole bladder for investigating bladder overactivity. J Pharmacol Exp Ther 319(3):1386–1394PubMedCrossRefGoogle Scholar
  47. Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelium cells by hydrostatic pressure changes: a possible sensory mechanism? J Physiol 505:503–511PubMedCrossRefGoogle Scholar
  48. Fetscher C, Fleichman M, Schmidt M, Krege S, Michel MC (2002) M3 muscarinic receptors mediate contraction of human urinary bladder. Br J Pharmacol 136:641–643PubMedCrossRefGoogle Scholar
  49. Finkbeiner AE (1985) Is bethanechol chloride clinically effective in promoting bladder emptying? A literature review. J Urol 134:443–449PubMedGoogle Scholar
  50. Finney SM, Stewart LH, Gillespie JI (2007) Cholinergic activation of phasic activity in the isolated bladder: possible evidence for M3- and M2-dependent components of a motor/sensory system. BJU Int 100(3):668–678PubMedCrossRefGoogle Scholar
  51. Foote J, Glavind K, Kralidis G, Wyndaele JJ (2005) Treatment of overactive bladder in the older patient: pooled analysis of three phase III studies of darifenacin, an M3 selective receptor antagonist. Eur Urol 48(3):471–477PubMedCrossRefGoogle Scholar
  52. Fovaeus M, Fujiwara M, Högestätt ED, Persson K, Andersson KE (1999) A non-nitrergic smooth muscle relaxant factor released from rat urinary bladder by muscarinic receptor stimulation. J Urol 161(2):649–653PubMedCrossRefGoogle Scholar
  53. Fry CH, Skennerton D, Wood D, Wu C (2002) The cellular basis of contraction in human detrusor smooth muscle from patients with stable and unstable bladders. Urology 59:3–12PubMedCrossRefGoogle Scholar
  54. Gillespie JI, Harvey IJ, Drake MJ (2003) Agonist- and nerve-induced phasic activity in the isolated whole bladder of the guinea pig: evidence for two types of bladder activity. Exp Physiol 88(3):343–357PubMedCrossRefGoogle Scholar
  55. Griebling TL, Kraus SR, Richter HE, Glasser DB, Carlsson M (2009) Tolterodine extended release is well tolerated in older subjects. Int J Clin Pract 63(8):1198–1204PubMedCrossRefGoogle Scholar
  56. Grol S, Essers PBM, van Koeveringe GA, Martinez-Martinez P, de Vente J, Gillespie JI (2009a) M3 muscarinic receptor expression on suburothelial interstitial cells. BJU Int 104:398–405PubMedCrossRefGoogle Scholar
  57. Gunasena KT, Nimmo AJ, Morrison JF, Whitaker EM (1995) Effects of denervation on muscarinic receptors in the rat bladder. Br J Urol 76(3):291–296PubMedCrossRefGoogle Scholar
  58. Hanna-Mitchell AT, Beckel JM, Barbadora S, Kanai AJ, de Groat WC, Birder LA (2007) Non-neuronal acetylcholine and urinary bladder urothelium. Life Sci 80(24–25):2298–2302PubMedCrossRefGoogle Scholar
  59. Harrison SC, Hunnam GR, Farman P, Ferguson DR, Doyle PT (1987) Bladder instability and denervation in patients with bladder outflow obstruction. Br J Urol 60(6):519–522PubMedCrossRefGoogle Scholar
  60. Hawthorn MH, Chapple CR, Cock M, Chess-Williams R (2000) Urothelium-derived inhibitory factor(s) influence detrusor muscle contractility in vitro. Br J Pharmacol 129:416–419PubMedCrossRefGoogle Scholar
  61. Hedlund P, Streng T, Lee T, Andersson K-E (2007) Effects of tolterodine on afferent neurotransmission in normal and resiniferatoxin treated conscious rats. J Urol 178:326–331PubMedCrossRefGoogle Scholar
  62. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM (1997) Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol 120:1409–1418PubMedCrossRefGoogle Scholar
  63. Hegde SS, Eglen R (1999) Muscarinic receptor subtypes modulating smooth muscle contractility on the urinary bladder. Life Sci 64(6–7):419–428PubMedCrossRefGoogle Scholar
  64. Hegde SS, Mammen M, Jasper JR (2004) Antimuscarinics for the treatment of overactive bladder: current options and emerging therapies. Curr Opin Investig Drugs 5(1):40–49PubMedGoogle Scholar
  65. Hill S, Khullar V, Wyndaele JJ et al (2006) Dose response with darifenacin, a novel once-daily M3 selective receptor antagonist for the treatment of overactive bladder: results of a fixed dose study. Int Urogynecol J Pelvic Floor Dysfunct 17:239–247PubMedCrossRefGoogle Scholar
  66. Igawa Y, Zhang X, Nishizawa O, Umeda M, Iwata A, Taketo MM, Manabe T, Matsui M, Andersson KE (2004) Cystometric findings in mice lacking muscarinic M2 or M3 receptors. J Urol 172(Part 1 of 2):2460–2464PubMedCrossRefGoogle Scholar
  67. Iijima K, De Wachter S, Wyndaele JJ (2007) Effects of the M3 receptor selective muscarinic antagonist darifenacin on bladder afferent activity of the rat pelvic nerve. Eur Urol 52:842–849PubMedCrossRefGoogle Scholar
  68. Ikeda K, Kobayashi S, Suzuki M, Miyata K, Takeuchi M, Yamada T, Honda K (2002) M(3) receptor antagonism by the novel antimuscarinic agent solifenacin in the urinary bladder and salivary gland. Naunyn Schmiedebergs Arch Pharmacol 366(2):97–103PubMedCrossRefGoogle Scholar
  69. Inadome A, Yoshida M, Takahashi W, Yono M, Seshita H, Miyamoto Y, Kawano T, Ueda S (1998) Prejunctional muscarinic receptors modulating acetylcholine release in rabbit detrusor smooth muscles. Urol Int 61:135–141PubMedCrossRefGoogle Scholar
  70. Irwin DE, Milsom I, Hunskaar S et al (2006) Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. Eur Urol 50:1306–1315PubMedCrossRefGoogle Scholar
  71. Johnston L, Carson C, Lyons AD, Davidson RA, McCloskey KD (2008) Cholinergic-induced Ca2+ signaling in interstitial cells of Cajal from the guinea pig bladder. Am J Physiol Renal Physiol 294(3):F645–F655PubMedCrossRefGoogle Scholar
  72. Jositsch G, Papdakis T, Haberberger RV, Wolff M, Wess J, Kummer W (2009) Suitability of muscarinic acetylcholine receptor antibodies for immunohistochemistry evaluated on tissue sections of receptor gene-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 379:389–395PubMedCrossRefGoogle Scholar
  73. Kaplan SA, Roehrborn CG, Dmochowski R et al (2006) Tolterodine extended release improves overactive bladder symptoms in men with overactive bladder and nocturia. Urology 68(2):328–332PubMedCrossRefGoogle Scholar
  74. Kay GG, Ebinger U (2008) Preserving cognitive function for patients with overactive bladder: evidence for a differential effect with darifenacin. Int J Clin Pract 62(11):1792–1800PubMedCrossRefGoogle Scholar
  75. Khullar V, Rovner ES, Dmochowski R, Nitti V, Wang J, Guan Z (2008) Fesoterodine DOSE response in subjects with overactive bladder syndrome. Urology 71(5):839–843PubMedCrossRefGoogle Scholar
  76. Kim JC, Yoo JS, Park EY, Hong SH, Seo SI, Hwang TK (2008) Muscarinic and purinergic receptor expression in the urothelium of rats with detrusor overactivity induced by bladder outlet obstruction. BJU Int 101:371–375PubMedCrossRefGoogle Scholar
  77. Kinder RB, Mundy AR (1985) Atropine blockade of nerve-mediated stimulation of the human detrusor. Br J Urol 57:418–421PubMedCrossRefGoogle Scholar
  78. Kobayashi F, Yageta Y, Segawa M, Matsuzawa S (2007a) Effects of imidafenacin (KRP-197/ONO-8025), a new anti-cholinergic agent, on muscarinic acetylcholine receptors. High affinities for M3 and M1 receptor subtypes and selectivity for urinary bladder over salivary gland. Arzneimittelforschung 57(2):92–100PubMedGoogle Scholar
  79. Kobayashi F, Yageta Y, Yamazaki T, Wakabayashi E, Inoue M, Segawa M, Matsuzawa S (2007b) Pharmacological effects of imidafenacin (KRP-197/ONO-8025), a new bladder selective anti-cholinergic agent, in rats. Comparison of effects on urinary bladder capacity and contraction, salivary secretion and performance in the Morris water maze task. Arzneimittelforschung 57(3):147–154PubMedGoogle Scholar
  80. Krichevsky VP, Pagala MK, Vaydovsky I, Damer V, Wise GJ (1999) Function of M3 muscarinic receptor in the rat urinary bladder following partial outlet obstruction. J Urol 161:1644–1650PubMedCrossRefGoogle Scholar
  81. Krishnamoorthy S, Kekre NS (2009) Detrusor underactivity: to tone or not to tone the bladder? Indian J Urol 25(3):407–408PubMedCrossRefGoogle Scholar
  82. Kullmann FA, Artim DE, Beckel JM, Barrick S, de Groat WC, Birder LA (2008) Heterogeneity of muscarinic receptor mediated Ca2+ responses in cultured urothelial cells from rat. Am J Physiol Renal Physiol 294:F971–F981PubMedCrossRefGoogle Scholar
  83. Lamers WH (2009) BJUI Letters. BJU Int 104:1538–1539PubMedGoogle Scholar
  84. Lazareno S, Birdsall NJ (1993) Pharmacological characterization of acetylcholine-stimulated [35S]-GTP gamma S binding mediated by human muscarinic m1-m4 receptors: antagonist studies. Br J Pharmacol 109(4):1120–1127PubMedGoogle Scholar
  85. Lazareno S, Buckley NJ, Roberts FF (1990) Characterization of muscarinic M4 binding sites in rabbit lung, chicken heart, and NG108-15 cells. Mol Pharmacol 38(6):805–815PubMedGoogle Scholar
  86. Lee S, Malhotra B, Creanga D, Carlsson M, Glue P (2009) A meta-analysis of the placebo response in antimuscarinic drug trials for overactive bladder. BMC Med Res Methodol 9:55PubMedCrossRefGoogle Scholar
  87. Longhurst PA, Leggett RE, Briscoe AK (1995) Characterization of the functional muscarinic receptors in the rat urinary bladder. Br J Pharmacol 116:2279–2285PubMedGoogle Scholar
  88. Madeiro AP, Rufino AC, Sartori MGF, Baracat EC, Lima GR, Girao MJ (2006) The effects of bethanechol and cisapride on urodynamic parameters in patients undergoing radical hysterectomy for cervical cancer. A randomised, double-blind, placebo controlled study. Int Urogynecol J Pelvic Floor Dysfunct 17:248–252PubMedCrossRefGoogle Scholar
  89. Mansfield KJ, Lui L, Michelson FJ, Moore KH, Millard RJ, Burcher E (2005) Muscarinic receptor subtypes in human bladder detrusor and mucosa, studied by radioligand binding and quantitative competitive RT-PCR: changes in ageing. Br J Pharmacol 144:1089–1099PubMedCrossRefGoogle Scholar
  90. Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A, Mitchelson FJ, Burcher E (2009) Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J Pharmacol Exp Ther 328(3):893–899PubMedCrossRefGoogle Scholar
  91. Masters JG, Neal DE, Gillespie JI (1999) The contribution of intracellular Ca2+ release to contraction in human bladder smooth muscle. Br J Pharmacol 127:996–1002PubMedCrossRefGoogle Scholar
  92. Masunaga K, Yoshida M, Inadome A, Murakami S, Sugiyama Y, Satoji Y, Maeda Y, Ueda S (2008) Pharmacogical effects of solifenacin on human isolated urinary bladder. Pharmacology 82(1):43–52CrossRefGoogle Scholar
  93. Masunaga K, Yoshida M, Inadome A, Iwashita H, Miyamae K, Ueda S (2006) Prostaglandin E2 release from isolated bladder strips in rats with spinal cord injury. Int J Urol 13(3):271–276PubMedCrossRefGoogle Scholar
  94. Matsui M, Motomura D, Fujikawa T, Jiang J, Takahashi S, Manabe T, Taketo MM (2002a) Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable. J Neurosci 22:10627–10632PubMedGoogle Scholar
  95. Matsui M, Yamada S, Oki T, Manabe S, Taketo MM, Ehlert FJ (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci 75:2971–2981PubMedCrossRefGoogle Scholar
  96. Matsumoto Y, Miyazato M, Furata A, Torimoto K, Hirao Y, Chancellor MB, Yoshimura N (2010) Differential roles of M2 and M3 muscarinic receptor subtypes in modulation of bladder afferent activity in rats. Urology 75(4):862–867PubMedCrossRefGoogle Scholar
  97. McCloskey KD (2010) Interstitial cells in the urinary bladder–localization and function. Neurourol Urodyn 29(1):82–87PubMedCrossRefGoogle Scholar
  98. Michel MC, Hegde SS (2006) Treatment of the overactive bladder syndrome with muscarinic receptor antagonists: a matter of metabolites? Naunyn Schmiedebergs Arch Pharmacol 374(2):79–85PubMedCrossRefGoogle Scholar
  99. Michel MC, Weiland T, Tsujimoto G (2009) How reliable are G-protein coupled receptor antibodies? Naunyn Schmiedebergs Arch Pharmacol 379:385–388PubMedCrossRefGoogle Scholar
  100. Miller K, DuBeau C, Bergmann M et al (2002) How does drug treatment improve urge incontinence? Neurourol Urodyn 32:186–199Google Scholar
  101. Mills IW, Greenland JE, McMurray G et al (2000) Studies of the pathophysiology of idiopathic detrusor instability: the physiological properties of the detrusor smooth muscle and its pattern of innervation. J Urol 163:646–651PubMedCrossRefGoogle Scholar
  102. Miyamoto Y, Yoshida M, Takahashi W, Inadome A, Yono M, Seshita H, Murakami S, Ueda S (2001) The effect of nitric oxide on acetylcholine release in the rabbit bladder. Eur J Pharmacol 428:59–67PubMedCrossRefGoogle Scholar
  103. Mori S, Kojima M, Sakai Y, Nakajima K (1999) Bladder dysfunction in dementia patients showing urinary incontinence: evaluation with cystometry and treatment with propiverine hydrochloride. Nippon Ronen Igakkai Zasshi 36(7):489–494PubMedCrossRefGoogle Scholar
  104. Mukerji G, Yiangou Y, Grogono J, Underwood J, Agarwal SK, Khullar V, Anand P (2006) Localisation of M2 and M3 muscarinic receptors in human bladder disorders and their clinical correlations. J Urol 176(1):367–373PubMedCrossRefGoogle Scholar
  105. Ney P, Kumar Pandita R, Newgreen DT, Breidenbach A, Stöhr T, Andersson KE (2008) Pharmacological characterisation of a novel investigational antimuscarinic drug, fesoterodine, in vitro and in vivo. BJU Int 101:1036–1042PubMedCrossRefGoogle Scholar
  106. Nilvebrant L, Andersson KE, Gillberg PG et al (1997) Tolterodine: a new bladder-selective antimuscarinic agent. Eur J Pharmacol 327:195PubMedCrossRefGoogle Scholar
  107. Noronha-Blob L, Lowe V, Patton A, Canning B, Costello D, Kinnier WJ (1989) Muscarinic receptors: relationships among phosphoinositide breakdown, adenylate cyclase inhibition, in vitro detrusor muscle contractions and in vivo cystometrogram studies in guinea pig bladder. J Pharmacol Exp Ther 249:843–851PubMedGoogle Scholar
  108. Novara G, Galfano A, Secco S, D’Elia C, Cavalleri S, Ficarra V, Artibani W (2008) A systematic review and meta-analysis of randomised controlled trials with antimuscarinic drugs for overactive bladder. Eur Urol 54:740–764PubMedCrossRefGoogle Scholar
  109. Ohtake A, Saitoh C, Yuyama H, Ukai M, Okutsu H, Noguchi Y, Hatanaka T, Suzuki M, Sato S, Sasamata M, Miyata K (2007) Pharmacological characterization of a new antimuscarinic agent, solifenacin succinate, in comparison with other antimuscarinic agents. Biol Pharm Bull 30(1):54–58PubMedCrossRefGoogle Scholar
  110. Persson K, Igawa Y, Mattiasson A, Andersson KE (1992) Effects of inhibition of the l-arginine/nitric oxide pathway in the rat lower urinary tract in vivo and in vitro. Br J Pharmacol 107(1):178–184PubMedGoogle Scholar
  111. Peters SLM, Schmidt M, Michel MC (2006) Rho kinase. A target for treating urinary bladder dysfunction? Trends Pharmacol Sci 27:492–497PubMedCrossRefGoogle Scholar
  112. Pontari MA, Braverman AS, Ruggieri MR et al (2004) The M2 muscarinic receptor mediates in vitro bladder contractions from patients with neurogenic bladder dysfunction. Am J Physiol Regul Integr Comp Physiol 286:R874–R880PubMedCrossRefGoogle Scholar
  113. Pradidarcheep W, Labruyere WT, Dabhoiwala NF, Lamers WH (2008) Lack of specificity of commercially available antisera: better specifications needed. J Histochem Cytochem 56:1099–1111PubMedCrossRefGoogle Scholar
  114. Pradidarcheep W, Stallen J, Labruyere WT, Dabhoiwala NF, Michel MC (2009) Lack of specificity of commercially available antisera against muscarinergic and adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol 379:397–402PubMedCrossRefGoogle Scholar
  115. Reilly K, Milsom I, Irwin D et al (2006) Prevalence of incontinence and overactive bladder: European results from the EPIC study. Eur Urol 5(Suppl):116Google Scholar
  116. Reitstetter R, He DS, Gruener R (1994) Oxotremorine-M activates single nicotinic acetylcholine receptor channels in cultured Xenopus myocytes. Eur J Pharmacol 264(1):27–32PubMedCrossRefGoogle Scholar
  117. Reynard JM (2004) Does anticholinergic medication have a role for men with lower urinary tract symptoms/benign prostatic hyperplasia either alone or in combination with other agents? Curr Opin Urol 14(1):13–16PubMedCrossRefGoogle Scholar
  118. Ronchi P, Gravina GL, Galatioto GP, Costa AM, Martella O, Vicentini C (2009) Urodynamic parameters after solifenacin treatment in men with overactive bladder symptoms and detrusor underactivity. Neurourol Urodyn 28:52–57PubMedCrossRefGoogle Scholar
  119. Ruggieri MR, Braverman AS (2006) Regulation of bladder muscarinic receptor subtype by experimental pathologies. Auton Autocoid Pharmacol 26:311–325CrossRefGoogle Scholar
  120. Saito M, Kondo A, Kato T, Hasegawa S, Miyake K (1993) Response of the human neurogenic bladder to KCl, carbachol, ATP and CaCl2. Br J Urol 72(3):298–302PubMedGoogle Scholar
  121. Sakakibara R, Uchiyama T, Yoshiyama M, Yamanishi T, Hattori T (2005) Preliminary communication: urodynamic assessment of donepezil hydrochloride in patients with Alzheimer’s disease. Neurourol Urodyn 24(3):273–275PubMedCrossRefGoogle Scholar
  122. Sand P, Zinner N, Newman D, Lucente V, Dmochowski R, Kelleher C, Dahl NV (2007) Oxybutynin transdermal system improves the quality of life in adults with overactive bladder: a multi-centre, community-based, randomized study. BJU Int 99(4):836–844PubMedCrossRefGoogle Scholar
  123. Schneider T, Fetscher C, Krege S, Michel MC (2004) Signal transduction underlying carbachol-induced contraction of human urinary bladder. J Pharmacol Exp Ther 309:1148–1153PubMedCrossRefGoogle Scholar
  124. Seeger T, Fedorova I, Zheng F, Miyakawa T, Koustova E, Gomeza J, Basile AS, Alzheimer C, Wess J (2004) M2 muscarinic acetylchline receptor knock-out mice show deficits in behavioural flexibility, working memory and hippocampal plasticity. J Neurosci 24:10117–10127PubMedCrossRefGoogle Scholar
  125. Sellers DJ, Yamanishi T, Yasuda K, Couldwell C, Chapple CR, Chess-Williams R (2000) M3 muscarinic receptors but not M2 mediated contraction of the porcine detrusor muscle in vitro. J Auton Pharmacol 20(3):171–176PubMedCrossRefGoogle Scholar
  126. Sibley GNA (1984) A comparison of spontaneous and nerve-mediated activity in bladder muscle from man, pig and rabbit. J Physiol 354:431–443PubMedGoogle Scholar
  127. Sink KM, Thomas J III, Xu H, Craig B, Kritchevsky S, Sands LP (2008) Dual use of bladder anticholinergics and cholinesterase inhibitors: long-term functional and cognitive outcomes. J Am Geriatr Soc 56(5):847–853PubMedCrossRefGoogle Scholar
  128. Sjogren C, Andersson KE, Husted S, Mattiasson A, Moller-Madsen B (1982) Atropine resistance of transmurally stimulated isolated human bladder muscle. J Urol 128:1368–1371PubMedGoogle Scholar
  129. Somogyi GT, de Groat WC (1999) Function, signal transduction mechanisms and plasticity of presynaptic muscarinic receptors in the urinary bladder. Life Sci 64(6–7):411–418PubMedCrossRefGoogle Scholar
  130. Somogyi GT, Tanowitz M, De Groat WC (1994) M1 muscarinic receptor-mediated facilitation of acetylcholine release in the rat urinary bladder. J Physiol 480(Pt 1):81–89PubMedGoogle Scholar
  131. Somogyi GT, Zernova GV, Yoshiyama M, Yamamoto T, de Groat WC (1998) Frequency dependence of muscarinic facilitation of transmitter release in urinary bladder strips from neurally intact or chronic spinal cord transected rats. Br J Pharmacol 125(2):241–246PubMedCrossRefGoogle Scholar
  132. Somogyi GT, Yokoyama EA, Szell EA, Smith CP, de Groat WC, Huard J, Chancellor MB (2002) Effect of cryoinjury on the contractile parameters of bladder strips: a model of impaired detrusor contractility. Brain Res Bull 59:23–28PubMedCrossRefGoogle Scholar
  133. Staskin DR (2005) Overactive bladder in the elderly: a guide to pharmacological management. Drugs Aging 22(12):1013–1028PubMedCrossRefGoogle Scholar
  134. Staskin DR, Robinson D (2009) Oxybutynin chloride topical gel: a new formulation of an established antimuscarinic therapy for overactive bladder. Expert Opin Pharmacother 10(18):3103–3111PubMedCrossRefGoogle Scholar
  135. Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M2 and M4 receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292:877–885PubMedGoogle Scholar
  136. Stevens LA, Sellers DJ, McKay NG, Chapple CR, Chess-Williams R (2006) Muscarinic receptor function, density and G-protein coupling in the overactive diabetic rat bladder. Auton Autocoid Pharmacol 26(3):303–309CrossRefGoogle Scholar
  137. Stevens LA, Cr C, Chess-Williams R (2007) Human idiopathic and neurogenic overactive bladders and the role of M(2) muscarinic receptors in contraction. Eur Urol 52(2):531–538PubMedCrossRefGoogle Scholar
  138. Stewart WF, Van Rooyen JB, Cundiff GW et al (2003) Prevalence and burden of overactive bladder in the United States. World J Urol 20:327–336PubMedGoogle Scholar
  139. Sui GP, Wu C, Fry C (2004) Electrical characteristics of suburothelial cells isolated from the human bladder. J Urol 171:938–943PubMedCrossRefGoogle Scholar
  140. Takeuchi T, Yamashiro N, Kawasaki T, Nakajima H, Azuma YT, Matusui M (2008) The role of muscarinic receptor subtypes in acetylcholine release from the urinary bladder obtained from muscarinic receptor knockout mouse. Neuroscience 156:381–389PubMedCrossRefGoogle Scholar
  141. Taylor JA, Kuchel GA (2006) Detrusor underactivity: clinical features and pathogenesis of an underdiagnosed geriatric condition. J Am Geriatr Soc 54:1920–1932PubMedCrossRefGoogle Scholar
  142. Tobin G, Sjogren C (1998) Prejunctional facilitatory and inhibitory modulation of parasympathetic nerve transmission in the rabbit urinary bladder. J Auton Nerv Syst 68:153–156PubMedCrossRefGoogle Scholar
  143. Tong YC, Cheng JT, Hsu CT (2006) Alterations of M2 muscarinic receptor protein and mRNA expression in the urothelium and muscle layer of the streptozotocin-induced diabetic rat urinary bladder. Neurosci Lett 406:216–221PubMedCrossRefGoogle Scholar
  144. Trendelenburg AU, Gomeza J, Klebroff W, Zhou H, Wess J (2003) Heterogeneity of presynaptic muscarinic receptors mediating inhibition of sympathetic transmitter release: a study with M2- and M4-receptor-deficient mice. Br J Pharmacol 138(3):469–480PubMedCrossRefGoogle Scholar
  145. Trendelenburg AU, Meyer A, Wess J, Starke K (2005) Distinct mixtures of muscarinic receptor subtypes mediate inhibition of noradrenaline release in different mouse peripheral tissues, as studied with receptor knockout mice. Br J Pharmacol 145(8):1153–1159PubMedCrossRefGoogle Scholar
  146. Tubaro A (2004) Defining overactive bladder: epidemiology and burden of disease. Urology 64(6 Suppl 1):2–6PubMedCrossRefGoogle Scholar
  147. Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F (2006) Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol 176:1673–1678PubMedCrossRefGoogle Scholar
  148. Wagg A, Wyndaele JJ, Sieber P (2006) Efficacy and tolerability of solifenacin in elderly subjects with overactive bladder syndrome: a pooled analysis. Am J Geriatr Pharmacother 4(1):14–24PubMedCrossRefGoogle Scholar
  149. Wang P, Luthin GR, Ruggieri MR (1995) Muscarinic acetylcholine receptor subtypes mediating urinary bladder contractility and coupling to GTP binding proteins. J Pharmacol Exp Ther 273:959–966PubMedGoogle Scholar
  150. Wein AJ, Malloy TR, Shofer F, Raezer DM (1980) The effects of bethanechol chloride on urodynamic parameters in normal women and in women with significant residual urine volumes. J Urol 124:397–399PubMedGoogle Scholar
  151. Wessler I, Roth E, Deutsch C, Brockerhoff P, Bittinger F, Kirkpatrick CJ, Kilbinger H (2001) Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transports. Br J Pharmacol 134:951–956PubMedCrossRefGoogle Scholar
  152. Wibberley A, Chen Z, Hu E, Hieble JP, Westfall TD (2003) Expression and functional role of Rho-kinase in rat urinary bladder smooth muscle. Br J Pharmacol 138:757–766PubMedCrossRefGoogle Scholar
  153. Womack KB, Heilman KM (2003) Tolterodine and memory: dry but forgetful. Arch Neurol 60(5):771–773PubMedCrossRefGoogle Scholar
  154. Wu C, Bayliss M, Newgreen D, Mundy AR, Fry CH (1999) A comparison of the mode of action of ATP and carbachol on isolated human detrusor smooth muscle. J Urol 162:1840–1847PubMedCrossRefGoogle Scholar
  155. Wuest M, Weiss A, Waelbroeck M, Braeter M, Kelly LU, Hakenberg OW, Ravens U (2006) Propiverine and metabolites: differences in binding to muscarinic receptors and in functional models of detrusor contraction. Naunyn Schmiedebergs Arch Pharmacol 374(2):87–97PubMedCrossRefGoogle Scholar
  156. Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, McKinzie DL, Felder CC, Deng CX, Faraci FM, Wess J (2001) Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410:207–212PubMedCrossRefGoogle Scholar
  157. Yamaguchi O, Shishido K, Tamura K, Ogawa T, Fujimura T, Ohtsuka M (1996) Evaluation of mRNAs encoding muscarinic receptor subtypes in human detrusor muscle. J Urol 156:1208–1213PubMedCrossRefGoogle Scholar
  158. Yamanishi T, Yasuda K, Chapple CR, Chess-Williams R (2000) The role of M2-muscarinic receptors in mediating contraction of the pig urinary bladder in vitro. Br J Pharmacol 131(7):1482–1488PubMedCrossRefGoogle Scholar
  159. Yamazaki T, Muraki Y, Anraku T (2011) In vivo bladder selectivity of imidafenacin, a novel antimuscarinic agent, assessed by using an effectiveness index for bladder capacity in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 384:319–329PubMedCrossRefGoogle Scholar
  160. Yokota T, Yamaguchi O (1996) Changes in cholinergic and purinergic neurotransmission in pathologic bladder of chronic spinal rabbit. J Urol 156(5):1862–1866PubMedCrossRefGoogle Scholar
  161. Yokoyama O, Yusup A, Miwa Y, Oyama N, Aoki Y, Akino H (2005) Effects of tolterodine on an overactive bladder depend on suppression of C-fiber bladder afferent activity in rats. J Urol 174(5):2032–2036PubMedCrossRefGoogle Scholar
  162. Yoshida M, Miyamae K, Iwashita H, Otani M, Inadome A (2004) Management of detrusor dysfunction in the elderly: changes in acetylcholine and adenosine triphosphate release during aging. Urology 63:17–23PubMedCrossRefGoogle Scholar
  163. Yoshida M, Inadome A, Maeda Y, Satoji Y, Masunaga K, Sugiyama Y, Murakami S (2006) Non-neuronal cholinergic system in human bladder urothelium. Urology 67:425–430PubMedCrossRefGoogle Scholar
  164. Zagorodnyuk VP, Gregory S, Costa M, Brookes SJ, Tramontana M, Giuliani S, Maggi CA (2009) Spontaneous release of acetylcholine from autonomic nerves in the bladder. Br J Pharmacol 157(4):607–619PubMedCrossRefGoogle Scholar
  165. Zarghooni S, Wunsch J, Bodenbenner M, Bruggmann D, Grando SA, Schwantes U, Wess J, Kummer W, Lips KS (2007) Expression of muscarinic and nicotinic acetylcholine receptors in the mouse urothelium. Life Sci 80:2308–2313PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Bond UniversityRobinaAustralia

Personalised recommendations