Advertisement

Costs and Benefits of Behavioral Specialization

  • Arne Brutschy
  • Nam-Luc Tran
  • Nadir Baiboun
  • Marco Frison
  • Giovanni Pini
  • Andrea Roli
  • Marco Dorigo
  • Mauro Birattari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6856)

Abstract

In this work, we study behavioral specialization in a swarm of autonomous robots. In the studied swarm, a robot working repeatedly on the same type of task improves in task performance due to learning. Robots may exploit this positive effect of learning by selecting with higher probability the tasks on which they have improved their performance. However, even though the exploitation of such performance-improving effects is clearly a benefit, specialization also entails certain costs. Using a task allocation strategy that allows the robots to behaviorally specialize, we study the trade-off between costs and benefits in simulation experiments. Additionally, we give a perspective on the impact of this trade-off in systems that use specialization.

Keywords

specialization task allocation swarm robotics swarm intelligence self-organization division of labor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beshers, S.N., Fewell, J.H.: Models of division of labor in social insects. Annual Review of Entomology 46, 413–440 (2001)CrossRefGoogle Scholar
  2. 2.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  3. 3.
    Brutschy, A., Pini, G., Baiboun, N., Decugnière, A., Birattari, M.: The TAM: A device for task abstraction for the e-puck robot. Tech. Rep. TR/IRIDIA/2010-015, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2010)Google Scholar
  4. 4.
    Brutschy, A., Tran, N.L., Baiboun, N., Frison, M., Pini, G., Roli, A., Dorigo, M., Birattari, M.: Costs and benefits of behavioral specialization – Online supplementary material (2011), http://iridia.supp/IridiaSupp2011-015/
  5. 5.
    Dornhaus, A.: Specialization does not predict individual efficiency in an ant. PLoS Biology 6(11), e285 (2008)CrossRefGoogle Scholar
  6. 6.
    Gautrais, J., Theraulaz, G., Deneubourg, J.-L., Anderson, C.: Emergent polyethism as a consequence of increased colony size in insect societies. Journal of Theoretical Biology 215(3), 363–373 (2002)CrossRefGoogle Scholar
  7. 7.
    Ikemoto, Y., Miura, T., Asama, H.: Adaptive division-of-labor control algorithm for multi-robot systems. Journal of Robotics and Mechatronics 22(4), 514–525 (2010)CrossRefGoogle Scholar
  8. 8.
    Jones, C., Matarić, M.J.: Adaptive division of labor in large-scale minimalist multi-robot systems. In: 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), pp. 1969–1974. IEEE Press, Piscataway (2003)Google Scholar
  9. 9.
    Labella, T.H., Dorigo, M., Deneubourg, J.-L.: Division of labour in a group of robots inspired by ants’ foraging behaviour. ACM Transactions on Autonomous and Adaptive Systems 1(1), 4–25 (2006)CrossRefGoogle Scholar
  10. 10.
    Li, L., Martinoli, A., Abu-Mostafa, Y.S.: Learning and measuring specialization in collaborative swarm systems. Adaptive Behavior 12(3-4), 199–212 (2004)CrossRefGoogle Scholar
  11. 11.
    Liu, W., Winfield, A.F.T., Sa, J., Chen, J., Dou, L.: Towards energy optimization: Emergent task allocation in a swarm of foraging robots. Adaptive Behavior 15(3), 289–305 (2007)CrossRefGoogle Scholar
  12. 12.
    Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Gonçalves, P.J.S., Torres, P.J.D., Alves, C.M.O. (eds.) Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65. IPCB: Instituto Politècnico de Castelo Branco, Castelo Branco (2009)Google Scholar
  13. 13.
    Nitschke, G., Schut, M., Eiben, A.: Emergent specialization in biologically inspired collective behavior systems, pp. 100–140. IGI Publishing, New York (2007)Google Scholar
  14. 14.
    Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Stirling, T., Gutiérrez, A., Gambardella, L.M., Dorigo, M.: ARGoS: a pluggable, multi-physics engine simulator for heterogeneous swarm robotics. Tech. Rep. TR/IRIDIA/2011-009, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2011)Google Scholar
  15. 15.
    Ratnieks, F.L.W., Anderson, C.: Task partitioning in insect societies. Insectes Sociaux 46(2), 95–108 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Arne Brutschy
    • 1
  • Nam-Luc Tran
    • 1
  • Nadir Baiboun
    • 1
    • 2
  • Marco Frison
    • 1
    • 3
  • Giovanni Pini
    • 1
  • Andrea Roli
    • 3
    • 1
  • Marco Dorigo
    • 1
  • Mauro Birattari
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium
  2. 2.ECAMInstitut Supérieur IndustrielBrusselsBelgium
  3. 3.DEIS-CesenaAlma Mater Studiorum Università di BolognaCesenaItaly

Personalised recommendations