The Interaction between Vortices and a Biomimetic Flexible Fin

  • Jennifer Brown
  • Lily Chambers
  • Keri M. Collins
  • Otar Akanyeti
  • Francesco Visentin
  • Ryan Ladd
  • Paolo Fiorini
  • William Megill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6856)

Abstract

The fluid-structure interaction of flexible bodies in steady and unsteady flow is a key area of interest for the development of underwater vehicles. In the design of marine vehicles the flow can often be seen as an obstacle to overcome, whilst in nature a fish interacts with the flow and is capable of achieving a high level of efficiency. Therefore by understanding how fish – or flexible bodies – interact with the flow we may be able to achieve a better level of co-operation between our vehicles and their environment, potentially attaining a better efficiency in design.

Keywords

Particle Image Velocimetry Unsteady Flow Underwater Vehicle Vortex Street Flexible Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Qualtieri, A., Rizzi, F., Todaro, M.T., Passaseo, A., Cingolani, R., De Vittorio, M.: Stress-Driven AlN Cantilever Based Flow Sensor for Fish Lateral Line System. Microelectronic Engineering (2011), doi:10.1016/j.mee.2011.02.091Google Scholar
  2. 2.
    Kunze, S., Brucker, C.: Flow Control over an Undulating Membrane. Experiments in Fluids 50, 747–759 (2011)CrossRefGoogle Scholar
  3. 3.
    Anderson, E.J., McGillis, W.R., Grosenbaugh, M.A.: The Boundary Layer of Swimming Fish. Journal of Experimental Biology 204, 81–102 (2001)Google Scholar
  4. 4.
    Godoy-Diana, R., Marais, C., Aider, J., Wesfried, J.E.: A Model for the Symmetry Breaking of the Reverse Bernard-von Kármán Vortex Street Produced by a Flapping Foil. Journal of Fluid Mechanics 622, 23–32 (2009)CrossRefMATHGoogle Scholar
  5. 5.
    Schnipper, T., Andersen, A., Bohr, T.: Vortex Wakes of a Flapping Foil. Journal of Fluid Mechanics 633, 411–423 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Muijres, F.T., Lentink, D.: Wake Visualization of a Heaving and Pitching Foil in a Soap Film. Experiments in Fluids 43, 665–673 (2007)CrossRefGoogle Scholar
  7. 7.
    Wang, S., Jia, L., Yin, X.: Kinematics and Forces of a Flexible Body in Kármán Vortex Street. Chinese Science Bulletin 54, 556–561 (2009)CrossRefGoogle Scholar
  8. 8.
    Gursul, I., Rockwell, D.: Vortex Street Impinging upon an Elliptical Leading Edge. Journal of Fluid Mechanics 211, 211–242 (1990)CrossRefGoogle Scholar
  9. 9.
    Riggs, P., Bowyer, A., Vincent, J.: Advantages of a Biomimetic Stiffness Profile in Pitching Flexible Fin Propulsion. Journal of Bionic Engineering 7, 113–119 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jennifer Brown
    • 1
  • Lily Chambers
    • 1
  • Keri M. Collins
    • 1
  • Otar Akanyeti
    • 2
  • Francesco Visentin
    • 2
  • Ryan Ladd
    • 1
  • Paolo Fiorini
    • 2
  • William Megill
    • 1
  1. 1.Ocean Technology Laboratory, Department of Mechanical EngineeringUniversity of BathBathUK
  2. 2.Department of Computer ScienceUniversity of VeronaVeronaItaly

Personalised recommendations