A Navigation System for a High-Speed Professional Cleaning Robot

  • Gorka Azkune
  • Mikel Astiz
  • Urko Esnaola
  • Unai Antero
  • Jose Vicente Sogorb
  • Antonio Alonso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6856)

Abstract

This paper describes an approach to automate professional floor cleaning tasks based on a commercial platform. The described navigation system works in indoor environments where no extra infrastructure is needed and with no previous knowledge of it. A teach&reproduce strategy has been adopted for this purpose. During teaching, the robot maps its environment and the cleaning path. During reproduction, the robot uses a new motion planning algorithm to follow the taught path whilst avoiding obstacles suitably. The new motion planning algorithm is needed due to the special platform and operational requirements. The system presented here is focused on achieving human comparable performance and safety.

Keywords

Navigation System Motion Planning Obstacle Avoidance Occupancy Grid Motion Planning Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cognitive robots (2010), http://www.c-robots.com/en/index.html
  2. 2.
    Borenstein, J., Koren, Y., Member, S.: The vector field histogram - fast obstacle avoidance for mobile robots. IEEE Journal of Robotics and Automation 7, 278–288 (1991)CrossRefGoogle Scholar
  3. 3.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22, 46–57 (1989)CrossRefGoogle Scholar
  4. 4.
    Elkmann, N., Hortig, J., Fritzsche, M.: Cleaning automation. In: Nof, S.Y. (ed.) Springer Handbook of Automation, pp. 1253–1264. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Fox, D.: Kld-sampling: Adaptive particle filters. In: Advances in Neural Information Processing Systems, vol. 14, pp. 713–720. MIT Press, Cambridge (2001)Google Scholar
  6. 6.
    Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robotics and Automation Magazine 4(1), 22–23 (1997)CrossRefGoogle Scholar
  7. 7.
    Hägele, M.: World Robotics, Service Robots 2009 (2009)Google Scholar
  8. 8.
    Intellibot robotics (2010), http://www.intellibotrobotics.com/
  9. 9.
    Lawitzky, G.: A navigation system for cleaning robots. Autonomous Robots 9, 255–260 (2000), 10.1023/A:1008910917742CrossRefGoogle Scholar
  10. 10.
    Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B.P., Konolige, K.: The office marathon: Robust navigation in an indoor office environment. In: International Conference on Robotics and Automation (May 2010)Google Scholar
  11. 11.
    Mazzolai, B., Mattoli, V., Laschi, C., Salvini, P., Ferri, G., Ciaravella, G., Dario, P.: Networked and cooperating robots for urban hygiene: the eu funded dustbot project. In: Proceedings of the Fifth International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 447–452. MIT Press, Cambridge (2008)Google Scholar
  12. 12.
    Moravec, H.: Sensor fusion in certainty grids for mobile robots. AI Mag. 9(2), 61–74 (1988)Google Scholar
  13. 13.
    Prassler, E., Ritter, A., Schaeffer, C., Fiorini, P.: A short history of cleaning robots. Auton. Robots 9(3), 211–226 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gorka Azkune
    • 1
  • Mikel Astiz
    • 1
  • Urko Esnaola
    • 1
  • Unai Antero
    • 1
  • Jose Vicente Sogorb
    • 2
  • Antonio Alonso
    • 2
  1. 1.Industrial Systems UnitTecnaliaSpain
  2. 2.Acciona R+DMadridSpain

Personalised recommendations