Towards Autonomous Energy-Wise RObjects

  • Florian Vaussard
  • Michael Bonani
  • Philippe Rétornaz
  • Alcherio Martinoli
  • Francesco Mondada
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6856)


In this article, the RObject concept is first introduced. This is followed by a survey of applicable energy scavenging technologies. Energy is a key issue for the large scale deployment of robotics in daily life, as recharging the batteries places a considerable burden on the end-user and is a waste of energy which has an overall negative impact on the limited resources of our planet. We show how the energy obtained from light, water flow, and human work, could be promising sources of energy for powering low-duty devices. To assess the feasibility of powering future RObjects with technologies, tests were conducted on commonly available robotic vacuum cleaners. These tests established an upper-bound on the power requirements for RObjects. Finally, based on these results, the feasibility of powering RObjects using scavenged energy is discussed.


Autonomous RObjects Energy scavenging Robotic vacuum cleaner Power awareness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bean, J.: Energy saving shower head, June 9, US Patent App. 11/148,524 (2005)Google Scholar
  2. 2.
    Beeby, S., White, N.: Energy Harvesting for Autonomous Systems. Artech House Publishers, Boston (2010)Google Scholar
  3. 3.
    Beeby, S., Tudor, M., White, N.: Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology 17, R175 (2006)CrossRefGoogle Scholar
  4. 4.
    Boletis, A., Driesen, W., Breguet, J., Brunete, A.: Solar Cell Powering with Integrated Global Positioning System for mm3 Size Robots. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5528–5533. IEEE, Los Alamitos (2007)Google Scholar
  5. 5.
    Callaway, E.: Wireless sensor networks: architectures and protocols. CRC Press, Boca Raton (2004)Google Scholar
  6. 6.
    Crisp, J.A., Adler, M., Matijevic, J.R., Squyres, S.W., Arvidson, R.E., Kass, D.M.: Mars exploration rover mission. Journal of Geophysical Research 108(E12), 8061 (2003)CrossRefGoogle Scholar
  7. 7.
    Denninghoff, D., Starman, L., Kladitis, P., Perry, C.: Autonomous power-scavenging MEMS robots. In: 48th Midwest Symposium on Circuits and Systems, pp. 367–370. IEEE, Los Alamitos (2006)Google Scholar
  8. 8.
    Federspiel, C., Chen, J.: Air-powered sensor. In: Proceedings of IEEE Sensors, 2003, vol. 1, pp. 22–25. IEEE, Los Alamitos (2004)CrossRefGoogle Scholar
  9. 9.
    Flammini, A., Marioli, D., Sardini, E., Serpelloni, M.: An autonomous sensor with energy harvesting capability for airflow speed measurements. In: 2010 IEEE Instrumentation and Measurement Technology Conference (I2MTC), pp. 892–897. IEEE, Los Alamitos (2010)CrossRefGoogle Scholar
  10. 10.
    Green, M., Emery, K., Hishikawa, Y., Warta, W.: Solar cell efficiency tables (version 34). Progress in Photovoltaics: Research and Applications 17(5), 320–326 (2009)CrossRefGoogle Scholar
  11. 11.
    Hande, A., Polk, T., Walker, W., Bhatia, D.: Indoor solar energy harvesting for sensor network router nodes. Microprocessors and Microsystems 31(6), 420–432 (2007)CrossRefGoogle Scholar
  12. 12.
    Kaplan, F.: Everyday robotics: robots as everyday objects. In: Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-aware Services: Usages and Technologies, pp. 59–64. ACM, New York (2005)Google Scholar
  13. 13.
    Kishi, M., Nemoto, H., Hamao, T., Yamamoto, M., Sudou, S., Mandai, M., Yamamoto, S.: Micro thermoelectric modules and their application to wristwatches as an energy source. In: Eighteenth International Conference on Thermoelectrics, 1999, pp. 301–307. IEEE, Los Alamitos (2002)Google Scholar
  14. 14.
    Knight, C., Davidson, J.: Thermal Energy Harvesting for Wireless Sensor Nodes with Case Studies. Advances in Wireless Sensors and Sensor Networks, 221–242 (2010)Google Scholar
  15. 15.
    Kymissis, J., Kendall, C., Paradiso, J., Gershenfeld, N.: Parasitic power harvesting in shoes. In: Second International Symposium on Wearable Computers, Digest of Papers, pp. 132–139 (1998)Google Scholar
  16. 16.
    Laibowitz, M., Paradiso, J.A.: Parasitic mobility for pervasive sensor networks. Pervasive Computing, 255–278 (2005)Google Scholar
  17. 17.
    Leonov, V., Torfs, T., Fiorini, P., Van Hoof, C.: Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sensors Journal 7(5), 650–657 (2007)CrossRefGoogle Scholar
  18. 18.
    Mandal, I., Patra, P.: Renewable Energy Source. International Journal of Computer Applications 1(17), 44–53 (2010)CrossRefGoogle Scholar
  19. 19.
    Melhuish, C., Ieropoulos, I., Greenman, J., Horsfield, I.: Energetically autonomous robots: Food for thought. Autonomous Robots 21(3), 187–198 (2006)CrossRefGoogle Scholar
  20. 20.
    Mitcheson, P., Yeatman, E., Rao, G., Holmes, A., Green, T.: Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE 96(9), 1457–1486 (2008)CrossRefGoogle Scholar
  21. 21.
    Obrist, B., Hegnauer, S.: A microwave powered data transponder. Sensors and Actuators A: Physical 46(1-3), 244–246 (1995)CrossRefGoogle Scholar
  22. 22.
    O’Donnell, T., Wang, W.: Power Management, Energy Conversion and Energy Scavenging for Smart Systems. Ambient Intelligence with Microsystems, 241–266 (2009)Google Scholar
  23. 23.
    Pfeifer, R., Bongard, J., Grand, S.: How the body shapes the way we think: a new view of intelligence. The MIT Press, Cambridge (2007)Google Scholar
  24. 24.
    Philipose, M., Smith, J., Jiang, B., Mamishev, A., Roy, S., Sundara-Rajan, K.: Battery-free wireless identification and sensing. IEEE Pervasive Computing, 37–45 (2005)Google Scholar
  25. 25.
    Phillips, S.: Temperature responsive self winding timepieces, October 1 (2002), US Patent 6,457,856Google Scholar
  26. 26.
    Priya, S., Inman, D.J.: Energy Harvesting Technologies, 1st edn. Springer Publishing Company, Heidelberg (2008) (incorporated)Google Scholar
  27. 27.
    Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M.: Design considerations for solar energy harvesting wireless embedded systems. In: Fourth International Symposium on Information Processing in Sensor Networks, IPSN 2005, pp. 457–462. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar
  28. 28.
    Rancourt, D., Tabesh, A., Fréchette, L.: Evaluation of centimeter-scale micro windmills: aerodynamics and electromagnetic power generation. In: Proc. PowerMEMS 2007, pp. 28–29 (2007)Google Scholar
  29. 29.
    Randall, J.: Designing indoor solar products. Wiley Online Library (2006)Google Scholar
  30. 30.
    Randall, J., Jacot, J.: The performance and modelling of 8 photovoltaic materials under variable light intensity and spectra. In: World Renewable Energy Conference VII Proceedings, Cologne, Germany (2002)Google Scholar
  31. 31.
    Reutter, J.: Horloge à remontage automatique par les variations de température ou de pression atmosphérique, January 15 (1929), Swiss Patent CH130941AGoogle Scholar
  32. 32.
    Rey, F., Leidi, M., Mondada, F.: Interactive mobile robotic drinking glasses. Distributed Autonomous Robotic Systems 8, 543–551 (2009)Google Scholar
  33. 33.
    Roundy, S., Wright, P., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications 26(11), 1131–1144 (2003)CrossRefGoogle Scholar
  34. 34.
    Roundy, S., Wright, P.K., Rabaey, J.M.: Energy scavenging for wireless sensor networks: with special focus on vibrations. Springer, Netherlands (2004)CrossRefGoogle Scholar
  35. 35.
    Sangani, K.: The sun in your pocket. Eng. Technol. 2(8), 36–38 (2007)CrossRefGoogle Scholar
  36. 36.
    Sardini, E., Serpelloni, M.: Self-powered wireless sensor for air temperature and velocity measurements with energy harvesting capability. IEEE Transactions on Instrumentation and Measurement PP(99), 1–7 (2010)Google Scholar
  37. 37.
    Smith, A.: Radio Frequency Principles & Applications. Universities Press (1998)Google Scholar
  38. 38.
    Starner, T.: Human-powered wearable computing. IBM Systems Journal 35(3&4) (1996)Google Scholar
  39. 39.
    Thomas, J.P., Qidwai, M.A., Kellogg, J.C.: Energy scavenging for small-scale unmanned systems. Journal of Power Sources 159(2), 1494–1509 (2006)CrossRefGoogle Scholar
  40. 40.
    Op het Veld, B., Hohlfeld, D., Pop, V.: Harvesting mechanical energy for ambient intelligent devices. Information Systems Frontiers 11(1), 7–18 (2009)CrossRefGoogle Scholar
  41. 41.
    Virtuani, A., Lotter, E., Powalla, M.: Influence of the light source on the low-irradiance performance of Cu (In, Ga) Se2 solar cells. Solar Energy Materials and Solar Cells 90(14), 2141–2149 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Florian Vaussard
    • 1
  • Michael Bonani
    • 1
  • Philippe Rétornaz
    • 1
  • Alcherio Martinoli
    • 2
  • Francesco Mondada
    • 1
  1. 1.EPFL – STI – LSROLausanneSwitzerland
  2. 2.EPFL – ENAC – IIE – DISALLausanneSwitzerland

Personalised recommendations