Sensing with Artificial Tactile Sensors: An Investigation of Spatio-temporal Inference

  • Asma Motiwala
  • Charles W. Fox
  • Nathan F. Lepora
  • Tony J. Prescott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6856)

Abstract

The ease and efficiency with which biological systems deal with several real world problems, that have been persistently challenging to implement in artificial systems, is a key motivation in biomimetic robotics. In interacting with its environment, the first challenge any agent faces is to extract meaningful patterns in the inputs from its sensors. This problem of pattern recognition has been characterized as an inference problem in cortical computation. The work presented here implements the hierarchical temporal memory (HTM) model of cortical computation using inputs from an array of artificial tactile sensors to recognize simple Braille patterns. Although the current work has been implemented using a small array of robot whiskers, the architecture can be extended to larger arrays of sensors of any arbitrary modality.

Keywords

Pattern recognition Cortical computation Hierarchical Temporal Memory Bayesian inference Tactile perception 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biotact consortium, http://www.biotact.org
  2. 2.
  3. 3.
    Berkes, P., Wiskott, L.: Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision 5(6) (2005)Google Scholar
  4. 4.
    Brecht, M., Preilowski, B., Merzenich, M.: Functional architecture of the mystacial vibrissae. Behavioural Brain Research 84(1-2), 81–97 (1997)CrossRefGoogle Scholar
  5. 5.
    Doya, K.: Bayesian brain: Probabilistic approaches to neural coding. The MIT Press, Cambridge (2007)MATHGoogle Scholar
  6. 6.
    Evans, M., Fox, C.W., Pearson, M.J., Lepora, N.F., Prescott, T.J.: Whisker-object contact speedaects radial distance estimation. In: IEEE International Conference on Robotics and Biomimetics (2010)Google Scholar
  7. 7.
    Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1(1), 1 (1991)CrossRefGoogle Scholar
  8. 8.
    Földiák, P.: Learning invariance from transformation sequences. Neural Computation 3(2), 194–200 (1991)CrossRefGoogle Scholar
  9. 9.
    Frisby, J., Stone, J.: Seeing: the computational approach to biological vision. The MIT Press, Cambridge (2009)Google Scholar
  10. 10.
    George, D., Hawkins, J.: Towards a mathematical theory of cortical micro-circuits. PLoS Comput. Biol. 5(10), e1000532 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    George, D.: How to make computers that work like the brain. In: Proceedings of the 46th Annual Design Automation Conference, DAC 2009, pp. 420–423. ACM, New York (2009)CrossRefGoogle Scholar
  12. 12.
    Hartung, J., McCormack, J., Jacobus, F.: Support for the use of hierarchical temporal memory systems in automated design evaluation: A first experiment. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego, CA, USA (2009)Google Scholar
  13. 13.
    Hinton, G.: Connectionist learning procedures. Artificial Intelligence 40(1-3), 185–234 (1989)CrossRefGoogle Scholar
  14. 14.
    Hubel, D., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology 160(1), 106 (1962)CrossRefGoogle Scholar
  15. 15.
    Knill, D., Pouget, A.: The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences 27(12), 712–719 (2004)CrossRefGoogle Scholar
  16. 16.
    Mountcastle, V.: An organizing principle for cerebral function: The unit model and the distributed system. In: Edelman, G., Mountcastle, V. (eds.) The Mindful Brain. MIT Press, Cambridge (1978)Google Scholar
  17. 17.
    Numenta: Hierarchical temporal memory: Comparison with existing models. Tech. rep., Numenta (2007)Google Scholar
  18. 18.
    Numenta: Problems that fit htm. Tech. rep., Numenta (2007)Google Scholar
  19. 19.
    Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)MATHGoogle Scholar
  20. 20.
    Rozado, D., Rodriguez, F., Varona, P.: Optimizing hierarchical temporal memory for multivariable time series. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6353, pp. 506–518. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Thornton, J., Gustafsson, T., Blumenstein, M., Hine, T.: Robust character recognition using a hierarchical Bayesian network. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1259–1264. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Asma Motiwala
    • 1
  • Charles W. Fox
    • 1
  • Nathan F. Lepora
    • 1
  • Tony J. Prescott
    • 1
  1. 1.Adaptive Behaviour Research Group, Department of PsychologyUniversity of SheffieldSheffieldUK

Personalised recommendations