Multi-rate Visual Servoing Based on Dual-Rate High Order Holds

  • J. Ernesto Solanes
  • Josep Tornero
  • Leopoldo Armesto
  • Vicent Girbés
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6856)

Abstract

This paper describes a multi-rate approach based on the extensive use of Dual-rate High Order Holds for visual servoing systems. Moreover a complete description of a general multi-rate approach, comparing Dual-rate Image-Based Visual Servoing algorithm with Dual-rate PID controller, where the PID is separated into its two different dynamics, using two different sampling periods is presented. In addition, a multi-rate Kalman filter is compared with Dual-rate High Order Holds, as an attempt to extend the use of this kind of interfaces to the estimation process. Results are obtained by simulation and also using a 6-DOF industrial robot (KUKA KR5 sixx R650) for the case of tracking objects with fast movement. This paper has validated the use of Dual-rate High Order Holds in non-linear systems, in general, and in robot visual servoing, in particular.

Keywords

Visual Servoing Multi-rate control non-linear systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armesto, L., Tornero, J.: Dual-rate high order holds based on primitive functions. In: American Control Conf., pp. 1140–1145 (2003)Google Scholar
  2. 2.
    Armesto, L., Tornero, J.: A general formulation for generating multi-rate models. In: American Control Conf., pp. 1146–1151 (2003)Google Scholar
  3. 3.
    Armesto, L., Tornero, J.: Linear quadratic gaussian regulators for multi-rate sampled-data stochastic systems. In: ICINCO, pp. 67–74 (2006)Google Scholar
  4. 4.
    Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)Google Scholar
  5. 5.
    Chaumette, F., Malis, E.: 2 1/2 d visual servoing: a possible solution to improve image-based and position-based visual servoings. In: Proceedings of ICRA 2000 IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 630–635 (2000)Google Scholar
  6. 6.
    Chaumette, F.: Potential problems of stability and convergence in image-based and position-based visual servoing. In: Kriegman, D., Hager, G., Morse, A. (eds.) The Confluence of Vision and Control. LNCIS, vol. 237, pp. 66–78. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Corke, P.I.: A robotics toolbox for matlab. IEEE Robotics Automation Magazine 3(1), 24–32 (1996)CrossRefGoogle Scholar
  8. 8.
    Corke, P.: The machine vision toolbox: a matlab toolbox for vision and vision-based control. IEEE Robotics Automation Magazine 12(4), 16–25 (2005)CrossRefGoogle Scholar
  9. 9.
    Fujimoto, H.: Visual servoing of 6 dof manipulator by multirate control with depth identification. In: Proceedings of 42nd IEEE Conf. on Decision and Control, vol. 5, pp. 5408–5413 (December 2003)Google Scholar
  10. 10.
    Fujimoto, H., Hori, Y.: Visual servoing based on multirate sampling control-application of perfect disturbance rejection control. In: Proceedings 2001 ICRA. IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 711–716 (2001)Google Scholar
  11. 11.
    Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Transactions on Robotics and Automation 12(5), 651–670 (1996)CrossRefGoogle Scholar
  12. 12.
    Khargonekar, P., Poolla, K., Tannenbaum, A.: Robust control of linear time-invariant plants using periodic compensation. IEEE Transactions on Automatic Control AC-30, 1088 (1985)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Marchand, E., Spindler, F., Chaumette, F.: Visp for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robotics and Automation Magazine 12(4), 40–52 (2005)CrossRefGoogle Scholar
  14. 14.
    Martinet, P., Gallice, J., Khadraoui, D.: Vision based control law using 3d visual features. In: Committees, Econometrica, pp. 497–502 (1996)Google Scholar
  15. 15.
    Mei, J., HuiGuang, L.: Optimization design for visual servoing in eye-in-hand robotics. In: IEEE Int. Conf. on Automation and Logistics, ICAL 2008, pp. 2064–2068 (September 2008)Google Scholar
  16. 16.
    Siebel, N.T., Kassahun, Y.: Learning neural networks for visual servoing using evolutionary methods. In: Sixth Int. Conf. on Hybrid Intelligent Systems, HIS 2006, p. 6 (December 2006)Google Scholar
  17. 17.
    Tornero, J., Gu, Y., Tomizuka, M.: Analysis of multi-rate discrete equivalent of continuous controller. In: American Control Conf., pp. 2759–2763 (1999)Google Scholar
  18. 18.
    Tornero, J., Tomizuka, M.: Dual-rate high order hold equivalent controllers. In: American Control Conf., pp. 175–179 (2000)Google Scholar
  19. 19.
    Tornero, J., Tomizuka, M.: Modeling, analysis and design tools for dual-rate systems. In: American Control Conf., pp. 4116–4121 (2002)Google Scholar
  20. 20.
    Tornero, J., Tomizuka, M., Camina, C., Ballester, E., Piza, R.: Design of dual-rate pid controllers. In: Proceedings of the IEEE Int. Conf. on Control Applications, pp. 859–865. IFAC Press (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. Ernesto Solanes
    • 1
  • Josep Tornero
    • 1
  • Leopoldo Armesto
    • 1
  • Vicent Girbés
    • 1
  1. 1.Universitat Politècnica de ValènciaValènciaSpain

Personalised recommendations