Advertisement

Evaluating the Effect of Robot Group Size on Relative Localisation Precision

  • Frank E. Schneider
  • Dennis Wildermuth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6856)

Abstract

Looking on co-operative position estimation in multi-robot systems, the question to what extend the number of robots has an influence on the quality of the resulting localisation is an important and interesting issue. This paper addresses this relation regarding a pure relative localisation approach based only on mutual observations between the robots. The intuitive expectation that more robots should improve the position estimation is motivated and the design of the experiments with special respect to possibly distorting parameters is discussed and reasoned in detail. An in-depth analysis of the collected data explains the only partial conformance of the experimental results with the expected outcome.

Keywords

Mobile Robot Extend Kalman Filter Localisation Step Robot Group Odometry Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barshan, B., Durrant-Whyte, H.F.: Inertial navigation systems for mobile robots. IEEE Transactions on Robotics and Automation 11(3), 328–342 (1995)CrossRefGoogle Scholar
  2. 2.
    Borenstein, J., Feng, L.: Measurement and Correction of Systematic Odometry Errors in Mobile Robots. IEEE Transactions on Robotics and Automation 12(6) (1996)Google Scholar
  3. 3.
    Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A Probabilistic Approach to Collaborative Multi-Robot Localization. Autonomous Robots 8(3), 325–344 (1996)CrossRefGoogle Scholar
  4. 4.
    Rekleitis, I.M., Dudek, G., Milios, E.E.: Probabilistic Cooperative Localization and Mapping in Practice. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Taipei, pp. 1907–1912 (2003)Google Scholar
  5. 5.
    Madhavan, R., Fregene, K., Parker, L.E.: Distributed Cooperative Outdoor Multirobot Localization and Mapping. Autonomous Robots 17(1), 23–39 (2004)CrossRefGoogle Scholar
  6. 6.
    Moutinho, A., Azinheira, J.R.: Comparison and fusion of odometry and GPS navigation for an outdoor mobile robot. In: Proceedings of the 11th IEEE International Conference on Advanced Robotics (ICAR), Coimbra (2003)Google Scholar
  7. 7.
    Kurazume, R., Hirose, S.: An Experimental Study of a Cooperative Positioning System. Autonomous Robots 8(1), 43–52 (2000)CrossRefGoogle Scholar
  8. 8.
    Howard, A., Matarić, M.J., Sukhatme, G.S.: Cooperative Relative Localization for Mobile Robot Teams: An Egocentric Approach. In: Schultz, A.C., Parker, L.E., Schneider, F.E. (eds.) Multi-Robot Systems: From Swarms to Intelligent Automata, pp. 65–76. Kluwer, Dordrecht (2003)Google Scholar
  9. 9.
    Schneider, F.E., Wildermuth, D.: An Application of Relative Localisation for Multi-Robot Navigation. In: Proceedings of the IASTED International Conference on Automation, Control, and Applications (ACIT-ACA), Novosibirsk (2005)Google Scholar
  10. 10.
    Roumeliotis, S.I., Rekleitis, I.M.: Propagation of Uncertainty in Cooperative Multirobot Localization: Analysis and Experimental Results. Autonomous Robots 17(1), 41–54 (2004)CrossRefGoogle Scholar
  11. 11.
    Mourikis, A.I., Roumeliotis, S.I.: Performance Analysis of Multirobot Cooperative Localization. IEEE Transactions on Robotics 22(4), 666–681 (2006)CrossRefGoogle Scholar
  12. 12.
    Schneider, F.E., Wildermuth, D.: Directed and Non-Directed Potential Field Approaches to Formation Navigation. In: Proceedings of the 2nd IASTED International Conference on Automation, Control, and Applications (ACIT-ACA 2005), Novosibirsk (2005)Google Scholar
  13. 13.
    Bar-Shalom, Y., Li, X.-R.: Estimation and Tracking: Principles, Techniques and Software. Artech House, Boston (1993)MATHGoogle Scholar
  14. 14.
    Technische Beschreibung Lasermesssysteme, doc. 8008969/06-2003, SICK AG, Division Auto Ident, Germany (2003)Google Scholar
  15. 15.
    Kräußling, A., Schneider, F.E., Wildermuth, D., Göb, R.: Zur Verfolgung ausgedehnter Ziele – eine Übersicht über ausgewählte Algorithmen und ein Vergleich deren Güte. FKIE-Forschungsbericht, vol. (94). Fraunhofer FKIE, Wachtberg (2005)Google Scholar
  16. 16.
    Schneider, F.E., Wildermuth, D., Kräußling, A.: Discussion of Exemplary Metrics for Multi-Robot Systems for Formation Navigation. International Journal of Advanced Robotic Systems 2(4), 345–353 (2005)CrossRefGoogle Scholar
  17. 17.
    Navarro, I., Matía, F.: A Proposal of a Set of Metrics for Collective Movement of Robots. In: Proceedings of the Workshop on Good Experimental Methodology in Robotics, Robotics: Science and Systems Conference (RSS), Seattle (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Frank E. Schneider
    • 1
  • Dennis Wildermuth
    • 1
  1. 1.Fraunhofer Institute for Communication, Information Processing and Ergonomics (FKIE)WachtbergGermany

Personalised recommendations