CrunchBot: A Mobile Whiskered Robot Platform

  • Charles W. Fox
  • Mathew H. Evans
  • Nathan F. Lepora
  • Martin Pearson
  • Andy Ham
  • Tony J. Prescott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6856)


CrunchBot is a robot platform for developing models of tactile perception and navigation. We present the architecture of CrunchBot, and show why tactile navigation is difficult. We give novel real-time performance results from components of a tactile navigation system and a description of how they may be integrated at a systems level. Components include floor surface classification, radial distance estimation and navigation. We show how tactile-only navigation differs fundamentally from navigation tasks using vision or laser sensors, in that the assumptions about the data preclude standard algorithms (such as extended Kalman Filters) and require brute-force methods.


Mobile Robot Likelihood Function Extend Kalman Filter Unscented Kalman Filter Navigation Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Diamond, M.E., von Heimendahl, M., Knutsen, P.M., Kleinfeld, D., Ahissar, E.: ’where’ and ’what’ in the whisker sensorimotor system. Nat. Rev. Neurosci. 9(8), 601–612 (2008)CrossRefGoogle Scholar
  2. 2.
    Evans, M., Fox, C.W., Pearson, M.J., Prescott, T.J.: Spectral template based classification of robotic whisker sensor signals. In: Proc. TAROS (2009)Google Scholar
  3. 3.
    Evans, M., Fox, C.W., Pearson, M.J., Prescott, T.J.: Whisker-object contact speed affects radial distance estimation. In: Proc. IEEE ROBIO (2010)Google Scholar
  4. 4.
    Fend, M.: Whisker-based texture discrimination on a mobile robot. Advances in Artificial Life, 302–311 (2005)Google Scholar
  5. 5.
    Fox, C., Prescott, T.: Hippocampus as unitary coherent particle filter. In: Proc. Int. Joint Conference on Neural Networks, IJCNN (2010)Google Scholar
  6. 6.
    Fox, C., Prescott, T.J.: Mapping with sparse local sensors and strong hierarchical priors. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J. (eds.) TAROS 2011. LNCS (LNAI), vol. 6856, pp. 183–194. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Fox, C.W., Evans, M., Pearson, M.J., Prescott, T.J.: Towards temporal inference for shape recognition from whiskers. In: Proc. TAROS (2008)Google Scholar
  8. 8.
    Fox, C., Mitchinson, B., Pearson, M., Pipe, A., Prescott, T.: Contact type dependency of texture classification in a whiskered mobile robot. Autonomous Robots 26(4), 223–239 (2009)CrossRefGoogle Scholar
  9. 9.
    Gopal, V., Hartmann, M.J.Z.: Using hardware models to quantify sensory data acquisition across the rat vibrissal array. Bioinspir. Biomim. 2(4), S135–S145 (2007)CrossRefGoogle Scholar
  10. 10.
    Grant, R.A., Mitchinson, B., Fox, C.W., Prescott, T.J.: Active touch sensing in the rat. Journal of Neurophysiology 101, 862–874 (2009)CrossRefGoogle Scholar
  11. 11.
    Hipp, J., Arabzadeh, E., Zorzin, E., Conradt, J., Kayser, C., Diamond, M., Konig, P.: Texture signals in whisker vibrations. J. Neurophysiol. 95(3), 1792 (2006)CrossRefGoogle Scholar
  12. 12.
    Kim, D.E., Moller, R.: Biomimetic whiskers for shape recognition. Robotics and Autonomous Systems 55(3), 229–243 (2007)CrossRefGoogle Scholar
  13. 13.
    Lepora, N., Evans, M., Fox, C., Diamond, M., Gurney, K., Prescott, T.: Naive Bayes texture classification applied to whisker data from a moving robot. In: Proc. IEEE World Congress on Comp. Int., WCCI 2010 (2010)Google Scholar
  14. 14.
  15. 15.
    Mitchinson, B., Martin, C.J., Grant, R.A., Prescott, T.J.: Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc. Biol. Sci. 274(1613), 1035–1041 (2007)CrossRefGoogle Scholar
  16. 16.
    Prescott, T., Pearson, M., Mitchinson, B., Sullivan, J., Pipe, A.: Whisking with robots from rat vibrissae to biomimetic technology for active touch. IEEE Robotics and Automation Magazine 16(3), 42–50 (2009)CrossRefGoogle Scholar
  17. 17.
    Russell, R., Wijaya, J.: Object location and recognition using whisker sensors. In: Australasian Conference on Robotics and Automation. Citeseer (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Charles W. Fox
    • 1
  • Mathew H. Evans
    • 1
  • Nathan F. Lepora
    • 1
  • Martin Pearson
    • 1
  • Andy Ham
    • 1
  • Tony J. Prescott
    • 1
  1. 1.Active Touch Laboratory at Sheffield (ATL@S)University of SheffieldSheffieldUK

Personalised recommendations