Advertisement

Bisimulations Meet PCTL Equivalences for Probabilistic Automata

  • Lei Song
  • Lijun Zhang
  • Jens Chr. Godskesen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6901)

Abstract

Probabilistic automata (PA) [20] have been successfully applied in the formal verification of concurrent and stochastic systems. Efficient model checking algorithms have been studied, where the most often used logics for expressing properties are based on PCTL [11] and its extension PCTL* [4]. Various behavioral equivalences are proposed for PAs, as a powerful tool for abstraction and compositional minimization for PAs. Unfortunately, the behavioral equivalences are well-known to be strictly stronger than the logical equivalences induced by PCTL or PCTL*. This paper introduces novel notions of strong bisimulation relations, which characterizes PCTL and PCTL* exactly. We also extend weak bisimulations characterizing PCTL and PCTL* without next operator, respectively. Thus, our paper bridges the gap between logical and behavioral equivalences in this setting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  3. 3.
    Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for markov chains. Inf. Comput. 200(2), 149–214 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bianco, A., De Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Transactions on Dependable and Secure Computing 99(1) (2009)Google Scholar
  6. 6.
    Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L., Jančar, P., Křetínský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–385. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and metrics. In: LICS, pp. 99–108 (2007)Google Scholar
  8. 8.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is sound and complete for pctl\(^{\mbox{*}}\). Inf. Comput. 208(2), 203–219 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Desharnais, J., Tracol, M., Zhioua, A.: Computing distances between probabilistic automata. In: QAPL (to appear, 2011)Google Scholar
  10. 10.
    Hansson, H., Jonsson, B.: A Calculus for Communicating Systems with Time and Probabitilies. In: IEEE Real-Time Systems Symposium, pp. 278–287 (1990)Google Scholar
  11. 11.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hennessy, M., Milner, R.: Algebraic Laws for Nondeterminism and Concurrency. J. ACM 32(1), 137–161 (1985)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hermanns, H., Parma, A., Segala, R., Wachter, B., Zhang, L.: Probabilistic logical characterization. Inf. Comput. 209(2), 154–172 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jonsson, B., Larsen, K., Wang, Y.: Probabilistic extensions of process algebras. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 685–710. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  15. 15.
    Katoen, J.-P., Kemna, T., Zapreev, I.S., Jansen, D.N.: Bisimulation minimisation mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Milner, R.: Communication and concurrency. Prentice Hall International Series in Computer Science (1989)Google Scholar
  18. 18.
    Philippou, A., Lee, I., Sokolsky, O.: Weak Bisimulation for Probabilistic Systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Segala, R.: Modeling and Verification of Randomized Distributed Realtime Systems. PhD thesis, MIT (1995)Google Scholar
  20. 20.
    Segala, R., Lynch, N.A.: Probabilistic Simulations for Probabilistic Processes. Nord. J. Comput. 2(2), 250–273 (1995)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Segala, R., Turrini, A.: Comparative analysis of bisimulation relations on alternating and non-alternating probabilistic models. In: QEST, pp. 44–53 (2005)Google Scholar
  22. 22.
    Song, L., Zhang, L., Godskesen, J.C.: Bisimulations Meet PCTL Equivalences for Probabilistic Automata (June 2011), http://arxiv.org/abs/1106.2181
  23. 23.
    van Glabbeek, R., Weijland, W.: Branching time and abstraction in bisimulation semantics. Journal of the ACM (JACM) 43(3), 555–600 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lei Song
    • 1
  • Lijun Zhang
    • 2
  • Jens Chr. Godskesen
    • 1
  1. 1.IT University of CopenhagenDenmark
  2. 2.DTU InformaticsTechnical University of DenmarkDenmark

Personalised recommendations