Timed Automata Can Always Be Made Implementable

  • Patricia Bouyer
  • Kim G. Larsen
  • Nicolas Markey
  • Ocan Sankur
  • Claus Thrane
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6901)

Abstract

Timed automata follow a mathematical semantics, which assumes perfect precision and synchrony of clocks. Since this hypothesis does not hold in digital systems, properties proven formally on a timed automaton may be lost at implementation. In order to ensure implementability, several approaches have been considered, corresponding to different hypotheses on the implementation platform. We address two of these: A timed automaton is samplable if its semantics is preserved under a discretization of time; it is robust if its semantics is preserved when all timing constraints are relaxed by some small positive parameter.

We propose a construction which makes timed automata implementable in the above sense: From any timed automaton A, we build a timed automaton A′ that exhibits the same behaviour as A, and moreover A′ is both robust and samplable by construction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P., Krčál, P., Yi, W.: Sampled semantics of timed automata. Logical Methods in Computer Science 6(3:14) (2010)Google Scholar
  2. 2.
    Altisen, K., Tripakis, S.: Implementation of timed automata: An issue of semantics or modeling? In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 273–288. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 470–484. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Probabilistic and topological semantics for timed automata. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 179–191. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of linear-time properties in timed automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Bouyer, P., Markey, N., Reynier, P.-A.: Robust analysis of timed automata via channel machines. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 157–171. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Bozga, M., Maler, O., Pnueli, A., Yovine, S.: Some progress in the symbolic verification of timed automata. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 179–190. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Cassez, F., Henzinger, T.A., Raskin, J.-F.: A comparison of control problems for timed and hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. Formal Methods in System Design 33(1-3), 45–84 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From timed models to timed implementations. Formal Aspects of Computing 17(3), 319–341 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  14. 14.
    Fahrenberg, U., Larsen, K.G., Thrane, C.: A quantitative characterization of weighted Kripke structures in temporal logic. Journal of Computing and Informatics 29(6+), 1311–1324 (2010)MathSciNetMATHGoogle Scholar
  15. 15.
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Henzinger, T.A., Majumdar, R., Prabhu, V.: Quantifying similarities between timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 226–241. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Krčál, P., Pelánek, R.: On sampled semantics of timed systems. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 310–321. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: POPL 1989, pp. 344–352 (1989)Google Scholar
  19. 19.
    Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for timed automata. In: LICS 2003, pp. 198–207. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  20. 20.
    Puri, A.: Dynamical properties of timed systems. Discrete Event Dynamic Systems 10(1-2), 87–113 (2000)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sankur, O., Bouyer, P., Markey, N.: Shrinking timed automata (2011) (submitted)Google Scholar
  22. 22.
    Thrane, C., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted transition systems. Journal Logic and Algebraic Programming 79(7), 689–703 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Kim G. Larsen
    • 2
  • Nicolas Markey
    • 1
  • Ocan Sankur
    • 1
  • Claus Thrane
    • 2
  1. 1.LSV, CNRS & ENS CachanFrance
  2. 2.Dept. Computer ScienceAalborg UniversityDenmark

Personalised recommendations