Advertisement

A Connector Algebra for P/T Nets Interactions

  • Roberto Bruni
  • Hernán Melgratti
  • Ugo Montanari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6901)

Abstract

A quite flourishing research thread in the recent literature on component-based system is concerned with the algebraic properties of various kinds of connectors for defining well-engineered systems. In a recent paper, an algebra of stateless connectors was presented that consists of five kinds of basic connectors, plus their duals. The connectors can be composed in series or in parallel and employing a simple 1-state buffer they can model the coordination language Reo. Pawel Sobocinski employed essentially the same stateful extension of connector algebra to provide semantics-preserving mutual encoding with some sort of elementary Petri nets with boundaries. In this paper we show how the tile model can be used to extend Sobocinski’s approach to deal with P/T nets, thus paving the way towards more expressive connector models.

Keywords

Operational Semantic Monoidal Category Tile System Basic Tile Tile Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. in Comp. Science 14(3), 329–366 (2004)Google Scholar
  2. 2.
    Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for reo. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open Petri nets based on deterministic processe. Math. Struct. in Comp. Science 15(1), 1–35 (2005)Google Scholar
  4. 4.
    Barbosa, M.A., Barbosa, L.S.: Specifying software connectors. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 52–67. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP. IEEE Trans. Computers 57(10), 1315–1330 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal Methods in System Design 36(2), 167–194 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connection. Theor. Comput. Sci. 286(2), 247–292 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor. Comput. Sci. 366(1-2), 98–120 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bruni, R., Montanari, U.: Dynamic connectors for concurrency. Theor. Comput. Sci. 281(1-2), 131–176 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bruni, R., Montanari, U., Rossi, F.: An interactive semantics of logic programming. TPLP 1(6), 647–690 (2001)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Corradini, A., Montanari, U.: An algebraic semantics for structured transition systems and its application to logic programs. Theoret. Comput. Sci. 103, 51–106 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ferrari, G.L., Montanari, U.: Tile formats for located and mobile systems. Inf. Comput. 156(1-2), 173–235 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fiadeiro, J.L., Maibaum, T.S.E.: Categorical semantics of parallel program design. Sci. Comput. Program. 28(2-3), 111–138 (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gadducci, F., Montanari, U.: The tile model. In: Proof, Language, and Interaction, pp. 133–166. The MIT Press, Cambridge (2000)Google Scholar
  15. 15.
    Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 526–539. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  16. 16.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96, 73–155 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Montanari, U., Rossi, F.: Graph rewriting, constraint solving and tiles for coordinating distributed systems. Applied Categorical Structures 7(4), 333–370 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Perry, D.E., Wolf, E.L.: Foundations for the study of software architecture. ACM SIGSOFT Software Engineering Notes 17, 40–52 (1992)CrossRefGoogle Scholar
  19. 19.
    Petri, C.: Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Mathematik, Bonn (1962)Google Scholar
  20. 20.
    Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61, 17–139 (2004)Google Scholar
  21. 21.
    Sobocinski, P.: A non-interleaving process calculus for multi-party synchronisation. In: ICE 2009. EPTCS, vol. 12, pp. 87–98 (2009)Google Scholar
  22. 22.
    Sobociński, P.: Representations of petri net interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Stefanescu, G.: Reaction and control i. mixing additive and multiplicative network algebras. Logic Journal of the IGPL 6(2), 348–369 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roberto Bruni
    • 1
  • Hernán Melgratti
    • 2
  • Ugo Montanari
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaItaly
  2. 2.Departamento de ComputaciónUniversidad de Buenos Aires - ConicetArgentina

Personalised recommendations