Invariance Properties of Quantifiers and Multiagent Information Exchange

  • Nina Gierasimczuk
  • Jakub Szymanik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6878)

Abstract

The paper presents two case studies of multi-agent information exchange involving generalized quantifiers. We focus on scenarios in which agents successfully converge to knowledge on the basis of the information about the knowledge of others, so-called Muddy Children puzzle [1] and Top Hat puzzle. We investigate the relationship between certain invariance properties of quantifiers and the successful convergence to knowledge in such situations. We generalize the scenarios to account for public announcements with arbitrary quantifiers. We show that the Muddy Children puzzle is solvable for any number of agents if and only if the quantifier in the announcement is positively active (satisfies a version of the variety condition). In order to get the characterization result, we propose a new concise logical modeling of the puzzle based on the number triangle representation of generalized quantifiers. In a similar vein, we also study the Top Hat puzzle. We observe that in this case an announcement needs to satisfy stronger conditions in order to guarantee solvability. Hence, we introduce a new property, called bounded thickness, and show that the solvability of the Top Hat puzzle for arbitrary number of agents is equivalent to the announcement being 1-thick.

Keywords

generalized quantifiers number triangle invariance properties Muddy Children Puzzle Top Hat Puzzle epistemic logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Littlewood: A mathematician’s miscellany. Meuthen, London (1953)MATHGoogle Scholar
  2. 2.
    Van Ditmarsch, H., Van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Netherlands (2007)CrossRefMATHGoogle Scholar
  3. 3.
    Gierasimczuk, N., Szymanik, J.: A note on a generalization of the muddy children puzzle. In: Proceedings of the 13th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2011), Groningen, The Netherlands, July 12-14. ACM, New York (2011)Google Scholar
  4. 4.
    Gierasimczuk, N.: Knowing One’s Limits. Logical analysis of inductive inference. PhD thesis, Universiteit van Amsterdam (2010)Google Scholar
  5. 5.
    Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44, 12–36 (1957)MathSciNetMATHGoogle Scholar
  6. 6.
    Van Benthem, J.: Essays in Logical Semantics. D. Reidel, Dordrecht (1986)CrossRefMATHGoogle Scholar
  7. 7.
    Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Oxford University Press, Oxford (2006)Google Scholar
  8. 8.
    Van Benthem, J.: Questions about quantifiers. Journal of Symbolic Logic 49(2), 443–466 (1984)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21(1), 46–62 (1980)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gold, E.: Language identification in the limit. Information and Control 10, 447–474 (1967)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Tiede, H.J.: Identifiability in the limit of context-free generalized quantifiers. Journal of Language and Computation 1, 93–102 (1999)Google Scholar
  12. 12.
    Väänänen, J., Westerståhl, D.: On the Expressive Power of Monotone Natural Language Quantifiers over Finite Models. Journal of Philosophical Logic 31(4), 327–358 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics and Philosophy 4, 159–219 (1981)CrossRefMATHGoogle Scholar
  14. 14.
    Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems that Learn. MIT Press, Chicago (1999)Google Scholar
  15. 15.
    Kelly, K.: The Logic of Reliable Inquiry. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  16. 16.
    Dégremont, C., Gierasimczuk, N.: Finite identification from the viewpoint of epistemic update. Information and Computation 209, 383–396 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gierasimczuk, N.: The problem of learning the semantics of quantifiers. In: ten Cate, B.D., Zeevat, H.W. (eds.) TbiLLC 2005. LNCS (LNAI), vol. 4363, pp. 117–126. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Szymanik, J.: Computational complexity of polyadic lifts of generalized quantifiers in natural language. Linguistics and Philosophy 33, 215–250 (2010)CrossRefGoogle Scholar
  19. 19.
    Gierasimczuk, N.: Identification through inductive verification. In: Bosch, P., Gabelaia, D., Lang, J. (eds.) TbiLLC 2007. LNCS, vol. 5422, pp. 193–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nina Gierasimczuk
    • 1
  • Jakub Szymanik
    • 1
  1. 1.Institute of Artificial IntelligenceUniversity of GroningenThe Netherlands

Personalised recommendations