Exploitation of Translational Bioinformatics for Decision-Making on Cancer Treatments

  • Jose Antonio Miñarro-Giménez
  • Teddy Miranda-Mena
  • Rodrigo Martínez-Béjar
  • Jesualdo Tomás Fernández-Breis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6865)


The biological information involved in hereditary cancer and medical diagnoses have been rocketed in recent years due to new sequencing techniques. Connecting orthology information to the genes that cause genetic diseases, such as hereditary cancers, may produce fruitful results in translational bioinformatics thanks to the integration of biological and clinical data. Clusters of orthologous genes are sets of genes from different species that can be traced to a common ancestor, so they share biological information and therefore, they might have similar biomedical meaning and function.

Linking such information to medical decision support systems would permit physicians to access relevant genetic information, which is becoming of paramount importance for medical treatments and research. Thus, we present the integration of a commercial system for decision-making based on cancer treatment guidelines, ONCOdata, and a semantic repository about orthology and genetic diseases, OGO. The integration of both systems has allowed the medical users of ONCOdata to make more informed decisions.


Ontology Translational bioinformatics Cluster of Orthologs Genetic Diseases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Helmons, P.J., Grouls, R.J., Roos, A.N., Bindels, A.J., Wessels-Basten, S.J., Ackerman, E.W., Korsten, E.H.: Using a clinical decision support system to determine the quality of antimicrobial dosing in intensive care patients with renal insufficiency. Quality and Safety in Health Care 19(1), 22–26 (2010)CrossRefGoogle Scholar
  2. 2.
    Kawamoto, K., Houlihan, C.A., Balas, E.A., Lobach, D.F.: Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ (2005); bmj.38398.500764.8FGoogle Scholar
  3. 3.
    Kaiser, K., Miksch, S.: Versioning computer-interpretable guidelines: Semi-automatic modeling of ‘Living Guidelines’ using an information extraction method. Artificial Intelligence in Medicine 46, 55–66 (2008)CrossRefGoogle Scholar
  4. 4.
    Gadaras, I., Mikhailov, L.: An interpretable fuzzy rule-based classification methodology for medical diagnosis. Artificial Intelligence in Medicine 47, 25–41 (2009)CrossRefGoogle Scholar
  5. 5.
    Kann, M.: Advances in translational bioinformatics: computational approaches for the hunting of disease genes. Brief Bioinform. 11(1), 96–110 (2010)CrossRefGoogle Scholar
  6. 6.
    Knaup, P., Ammenwerth, E., Brandner, R., Brigl, B., Fischer, G., Garde, S., Lang, E., Pilgram, R., Ruderich, F., Singer, R., Wolff, A., Haux, R., Kulikowski, C.: Towards clinical bioinformatics: advancing genomic medicine with informatics methods and tools. Methods of Information in Medicine 43(3), 302–307 (2004)Google Scholar
  7. 7.
    Ruttenberg, A., Clark, T., Bug, W., Samwald, M., Bodenreider, O., Chen, H., Doherty, D., Forsberg, K., Gao, Y., Kashyap, V., Kinoshita, J., Luciano, J., Marshall, M., Ogbuji, C., Rees, J., Stephens, S., Wong, G.T., Wu, E., Zaccagnini, D., Hongsermeier, T., Neumann, E., Herman, I., Cheung, K.: Advancing translational research with the semantic web. BMC Bioinformatics 8, 2 (2007)CrossRefGoogle Scholar
  8. 8.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  9. 9.
    Prokosch, H., Ganslandt, T.: Perspectives for medical informatics. reusing the electronic medical record for clinical research. Methods of Information in Medicine 48(1), 38–44 (2009)Google Scholar
  10. 10.
    Miranda-Mena, T., Benítez-Uzcategui, S., Ochoa, J., Martínez-Béjar, R., Fernández-Breis, J., Salinas, J.: A knowledge-based approach to assign breast cancer treatments in oncology units. Expert Systems with Applications 31, 451–457 (2006)CrossRefGoogle Scholar
  11. 11.
    Goldblatt, E., Lee, W.: From bench to bedside: the growing use of translational research in cancer medicine. American Journal of Translational Research 2, 1–18 (2010)Google Scholar
  12. 12.
    Miñarro Gimenez, J., Madrid, M., Fernandez Breis, J.: Ogo: an ontological approach for integrating knowledge about orthology. BMC Bioinformatics 10(suppl. 10:S13) (2009)Google Scholar
  13. 13.
    Miranda-Mena, T., Martínez-Costa, C., Moner, D., Menárguez-Tortosa, M., Maldonado, J., Robles-Viejo, M., Fernśndez-Breis, J.: MIURAS 2: Motor de integración universal para aplicaciones sanitarias avanzadas. In: Inforsalud (2010)Google Scholar
  14. 14.
    Kang, B.: Validating Knowledge Acquisition: Multiple Classification Ripple Down Rules. PhD thesis, University of New South Wales (1996)Google Scholar
  15. 15.
    Miñarro-Gimenez, J., Madrid, M., Fernandez-Breis, J.: An integrated ontological knowledge base about orthologous genes and proteins. In: Proceedings of 1st Workshop SWAT4LS 2008, vol. 435 (2008)Google Scholar
  16. 16.
    Miñarro-Giménez, J.A., Aranguren, M.E., García-Sánchez, F., Fernández-Breis, J.T.: A semantic query interface for the OGO platform. In: Khuri, S., Lhotská, L., Pisanti, N. (eds.) ITBAM 2010. LNCS, vol. 6266, pp. 128–142. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jose Antonio Miñarro-Giménez
    • 1
  • Teddy Miranda-Mena
    • 2
  • Rodrigo Martínez-Béjar
    • 1
  • Jesualdo Tomás Fernández-Breis
    • 1
  1. 1.Facultad de InformáticaUniversidad de MurciaMurciaSpain
  2. 2.IMETMurciaSpain

Personalised recommendations