I Can Tell by the Way You Use Your Walk: Real-Time Classification of Wayfinding Performance

  • Makoto Takemiya
  • Toru Ishikawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6899)

Abstract

Wayfinding activities often pose difficulty, especially for people with poor spatial abilities. If wayfinding aides can take into account individual differences during navigation, targeted assistance may be able to improve wayfinding performance. To enable this, the performance of wayfinders must first be classified. This work proposes a novel method that uses a probabilistic scoring function to classify wayfinding performance using only information available in real-time during route traversal. Training data for the classifier was algorithmically generated as routes representing different levels of wayfinding performance. This approach was tested through an empirical study in which people with different abilities walked from a start to a goal. The results show that performance of wayfinders can be reliably classified into two groups–good and poor–and that this classification can be done using only information available during route traversal. Our results suggest that environmental structure plays an important role in wayfinders’ route choice.

Keywords

navigation route choice individual differences spatial cognition spatial abilities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, D., Vassilvitskii, S.: K-Means++: The Advantages of Careful Seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp. 1027–1035. Society for Industrial and Applied Mathematics, Philadelphia (2007)Google Scholar
  2. 2.
    Baldwin, C.: Individual Differences in Navigational Strategy: Implications for Display Design. Theoretical Issues in Ergonomics Science 10(5), 443–458 (2009)CrossRefGoogle Scholar
  3. 3.
    Baldwin, C., Reagan, I.: Individual Differences in Route-Learning Strategy and Associated Working Memory Resources. Human Factors: The Journal of the Human Factors and Ergonomics Society 51(3), 368–377 (2009)CrossRefGoogle Scholar
  4. 4.
    Bojduj, B., Weber, B., Richter, K.F., Bertel, S.: Computer Aided Architectural Design: Wayfinding Complexity Analysis. In: 12th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2008, pp. 919–924. IEEE, Los Alamitos (2008)CrossRefGoogle Scholar
  5. 5.
    Dabbs, J., Chang, E., Strong, R., Milun, R.: Spatial Ability, Navigation Strategy, and Geographic Knowledge among Men and Women. Evolution and Human Behavior 19(2), 89–98 (1998)CrossRefGoogle Scholar
  6. 6.
    Dalton, R.: The Secret is to Follow Your Nose. Environment and Behavior 35(1), 107 (2003)CrossRefGoogle Scholar
  7. 7.
    Dave, K., Lawrence, S., Pennock, D.M.: Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews. In: Proceedings of the 12th International Conference on World Wide Web, WWW 2003, pp. 519–528. ACM, New York (2003)Google Scholar
  8. 8.
    Duckham, M., Kulik, L.: “Simplest” Paths: Automated Route Selection for Navigation. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 169–185. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Frankenstein, J., Büchner, S., Tenbrink, T., Hölscher, C.: Influence of Geometry and Objects on Local Route Choices during Wayfinding. In: Hölscher, C., Shipley, T., Olivetti Belardinelli, M., Bateman, J., Newcombe, N. (eds.) Spatial Cognition VII. LNCS, vol. 6222, pp. 41–53. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Golledge, R.: Path Selection and Route Preference in Human Navigation: A Progress Report. In: Kuhn, W., Frank, A. (eds.) COSIT 1995. LNCS, vol. 988, pp. 207–222. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Hart, P., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)CrossRefGoogle Scholar
  12. 12.
    Hegarty, M., Montello, D., Richardson, A., Ishikawa, T., Lovelace, K.: Spatial Abilities at Different Scales: Individual Differences in Aptitude-Test Performance and Spatial-Layout Learning. Intelligence 34(2), 151–176 (2006)CrossRefGoogle Scholar
  13. 13.
    Hegarty, M., Richardson, A., Montello, D., Lovelace, K., Subbiah, I.: Development of a Self-Report Measure of Environmental Spatial Ability. Intelligence 30(5), 425–447 (2002)CrossRefGoogle Scholar
  14. 14.
    Hillier, B., Iida, S.: Network and Psychological Effects in Urban Movement. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 475–490. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Hochmair, H., Frank, A.U.: Influence of Estimation Errors on Wayfinding-Decisions in Unknown Street Networks–Analyzing the Least-Angle Strategy. Spatial Cognition and Computation 2, 283–313 (2002)CrossRefGoogle Scholar
  16. 16.
    Ishikawa, T., Fujiwara, H., Imai, O., Okabe, A.: Wayfinding with a GPS-Based Mobile Navigation System: A Comparison with Maps and Direct Experience. Journal of Environmental Psychology 28(1), 74–82 (2008)CrossRefGoogle Scholar
  17. 17.
    Ishikawa, T., Montello, D.: Spatial Knowledge Acquisition from Direct Experience in the Environment: Individual Differences in the Development of Metric Knowledge and the Integration of Separately Learned Places. Cognitive Psychology 52(2), 93–129 (2006)CrossRefGoogle Scholar
  18. 18.
    Jacobs, J., Kahana, M.J., Ekstrom, A.D., Mollison, M.V., Fried, I.: A Sense of Direction in Human Entorhinal Cortex. Proceedings of the National Academy of Sciences 107(14), 6487–6492 (2010)CrossRefGoogle Scholar
  19. 19.
    Kato, Y., Takeuchi, Y.: Individual Differences in Wayfinding Strategies. Journal of Environmental Psychology 23(2), 171–188 (2003)CrossRefGoogle Scholar
  20. 20.
    Liben, L., Downs, R.: Understanding Person-Space-Map Relations: Cartographic and Developmental Perspectives. Developmental Psychology 29(4), 739–752 (1993)CrossRefGoogle Scholar
  21. 21.
    Liu, A., Hile, H., Borriello, G., Brown, P., Harniss, M., Kautz, H., Johnson, K.: Customizing Directions in an Automated Wayfinding System for Individuals with Cognitive Impairment. In: Proceeding of the Eleventh International ACM SIGACCESS Conference on Computers and Accessibility, pp. 27–34. ACM, New York (2009)CrossRefGoogle Scholar
  22. 22.
    Liu, B.: Web Data Mining. Springer, Heidelberg (2007)MATHGoogle Scholar
  23. 23.
    Montello, D.: Navigation. In: The Cambridge Handbook of Visuospatial Thinking, vol. 18, pp. 257–294 (2005)Google Scholar
  24. 24.
    Raubal, M., Winter, S.: Enriching Wayfinding Instructions with Local Landmarks. In: Egenhofer, M., Mark, D. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 243–259. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Richter, K. F.: Adaptable Path Planning in Regionalized Environments. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 453–470. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Richter, K. F., Weber, B., Bojduj, B., Bertel, S.: Supporting the Designer’s and the User’s Perspectives in Computer-Aided Architectural Design. Advanced Engineering Informatics 24(2), 180–187 (2010)CrossRefGoogle Scholar
  27. 27.
    Simon, H.: The Sciences of the Artificial. The MIT Press, Cambridge (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Makoto Takemiya
    • 1
  • Toru Ishikawa
    • 2
  1. 1.Graduate School of Interdisciplinary Information StudiesThe University of TokyoJapan
  2. 2.Center for Spatial Information ScienceThe University of TokyoJapan

Personalised recommendations