Information on the Consequence of a Move and Its Use for Route Improvisation Support

  • Takeshi Shirabe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6899)

Abstract

This paper proposes a new method of navigational assistance in unfamiliar environments. In such environments, major concerns would normally be how to find a good route to a selected destination and how to design and communicate directions to follow that route. This may not be the case, however, if route selection criteria are not complete or subject to change during a trip. To cope with such uncertainty, the proposed method calculates, for each possible move from the current position, a single value characterizing the consequence of that move, e.g., how long it will take to reach the destination if that move is made. The paper outlines a design of a route improvisation support system equipped with this method, and underlines the merit of letting the user build up a route progressively by taking into account highly local, temporary, or personal information that is not stored in the system but collected by the user while traveling.

Keywords

Short Path Navigation System Short Path Problem Short Path Length Short Path Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms and applications. Prentice Hall, Englewood Cliffs (1993)Google Scholar
  2. 2.
    Been, K., Nöllenburg, M., Poon, S.-H., Wolff, A.: Optimizing active ranges for consistent dynamic map labeling. Computational Geometry 43(3), 312–328 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Cadwell, T.: On finding minimum routes in a network with turn penalties. Communications of the ACM 4(2), 107–108 (1961)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ellard, C.: You Are Here: Why We Can Find Our Way to the Moon, But Get Lost in the Mall. Doubleday, New York (2009)Google Scholar
  5. 5.
    Dehne, F., Omran, M.T., Sack, J.-R.: Shortest paths in time-dependent FIFO networks using edge load forecasts. In: Proceedings of the Second International Workshop on Computational Transportation Science, IWCTS 2009 (2009)Google Scholar
  6. 6.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Fan, Y., Kalaba, R., Moore, J.: Arriving on time. Journal of Optimization Theory and Applications 127(3), 497–513 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics SSC4 4(2), 100–107 (1968)CrossRefGoogle Scholar
  9. 9.
    Kamburowski, J.: A note on the stochastic shortest route problem. Operations Research 33(3), 696–698 (1985)MATHCrossRefGoogle Scholar
  10. 10.
    Kaufman, D.E., Smith, R.L.: Fastest paths in time-dependent networks for ivhs application. IVHS Journal 1, 1–11 (1993)Google Scholar
  11. 11.
    Kirby, R.F., Potts, R.B.: The minimum route problem for networks with turn penalties and prohibitions. Transport Research 3, 397–408 (1969)CrossRefGoogle Scholar
  12. 12.
    Klippel, A., Tappe, H., Habel, C.: Pictorial representations of routes: Chunking route segments during comprehension. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 11–33. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Lovelace, K.L., Hegarty, M., Montello, D.R.: Elements of good route directions in familiar and unfamiliar environments. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 65–82. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Montello, D.R.: Navigation. In: Shah, P., Miyake, A. (eds.) The Cambridge Handbook of Visuospatial Thinking, pp. 257–294. Cambridge University Press, Cambridge (2005)Google Scholar
  15. 15.
    Orda, A., Rom, R.: Minimum weight paths in time-dependent network. Networks 21(3), 295–320 (1991)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Raubal, M., Winter, S.: Enriching wayfinding instructions with local landmarks. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 243–259. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Richter, K.-F., Tomko, M., Winter, S.: A dialog-driven process of generating route directions. Computers, Environment and Urban Systems 32(3), 233–245 (2008)CrossRefGoogle Scholar
  18. 18.
    Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: Proceedings of ACM SIGMOD Conference, Vancouver, Canada, pp. 43–54 (2008)Google Scholar
  19. 19.
    Sankaranarayanan, J., Samet, H., Alborzi, H.: Path oracles for spatial networks. In: Proceedings of the 35th International Conference on Very Large Data Bases (VLDB), Lyon, France, vol. 2, pp. 1210–1221 (2009)Google Scholar
  20. 20.
    Schmid, F.: Knowledge-based wayfinding maps for small display cartography. Journal of Location Based Systems 2(1), 57–83 (2008)CrossRefGoogle Scholar
  21. 21.
    Sigal, C.E., Pritsker, A.A.B., Solberg, J.J.: The stochastic shortest route problem. Operations Research 28(5), 1122–1129 (1980)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Streeter, L.A., Vitello, D., Wonsiewicz, S.A.: How to tell people where to go: comparing navigational aids. International Journal of Man-Machine Studies 22, 549–562 (1985)CrossRefGoogle Scholar
  23. 23.
    Wiener, J.M., Büchner, S.J., Hölscher, C.: Taxonomy of human wayfinding tasks: a knowledge-based approach. Spatial Cognition & Computation 9(2), 152–165 (2008)CrossRefGoogle Scholar
  24. 24.
    Winter, S.: Modeling Costs of Turns in Route Planning. Geoinformatica 6, 345–361 (2002)MATHCrossRefGoogle Scholar
  25. 25.
    Ziliaskopoulos, A., Mahmassani, H.S.: Time-dependent shortest path algorithm for real-time intelligent vehicle highway system applications. Transportation Research Record 1408, 94–100 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Takeshi Shirabe
    • 1
  1. 1.School of Architecture and the Built EnvironmentRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations