Towards a Formalization of Social Spaces for Socially Aware Robots

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6899)


This article presents a taxonomy of social spaces distinguishing five basic types: personal space, activity space, affordance space, territory, and penetrated space. The respective space-constituting situations and the mereotopological structure for each social space type are specified. We show how permissions for actions of agents in social spaces can be modeled using the situations calculus. Specifications of social spaces and permissions build the fundament for socially aware action planning.


Activity Space Space Region Social Space Social Robot Personal Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartneck, C., Forlizzi, J.: A design-centred framework for social human-robot interaction. In: Proceedings of the RO-MAN 2004, pp. 591–594 (2004)Google Scholar
  2. 2.
    Cirillo, M., Karlsson, L., Saffiotti, A.: A human-aware robot task planner. In: Proceedings of ICAPS 2009, pp. 58–65 (2009)Google Scholar
  3. 3.
    Donnelly, M.: Relative places. Applied Ontology 1, 55–75 (2005)Google Scholar
  4. 4.
    Galton, A.: The formalities of affordance. In: ECAI 2010: Proceedings of the Workshop on Spatio-Temporal Dynamics, pp. 1–6 (2010)Google Scholar
  5. 5.
    Gibson, J.J.: The theory of affordances. In: Shaw, R.E., Bransford, J. (eds.) Perceiving, Acting and Knowing: Toward an Ecological Psychology, pp. 67–82. Erlbaum, Hillsdale (1977)Google Scholar
  6. 6.
    Goffman, E.: Relations in Public – Microstudies of the Public Order. Transaction Publishers, New Brunswick (2010) (originally published in 1971 by Basic Books, New York)Google Scholar
  7. 7.
    Hall, E.T.: The Hidden Dimension, Man’s Use of Space in Public and Private. The Bodley Head, London (1966)Google Scholar
  8. 8.
    Hüttenrauch, H., Severinson-Eklundh, K., Green, A., Topp, E.A.: Investigating spatial relationships in human-robot interaction. In: Proceedings of IROS 2006, pp. 5052–5059 (2006)Google Scholar
  9. 9.
    Kendon, A.: Conducting Interaction: Patterns of Behavior and Focused Encounters. Cambridge University Press, Cambridge (1990)Google Scholar
  10. 10.
    Kulik, L., Eschenbach, C., Habel, C., Schmidtke, H.R.: A graded approach to directions between extended objects. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 119–131. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Lawson, B.: The Language of Space. Architectural Press, Oxford (2001)Google Scholar
  12. 12.
    Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic programming language for dynamic domains. Journal of Logic Programming 31, 59–84 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Löw, M.: Raumsoziologie. Suhrkamp, Frankfurt am Main, Germany (2001)Google Scholar
  14. 14.
    Martinson, E., Brock, D.: Improving human-robot interaction through adaptation to the auditory scene. In: Proceedings of HRI 2007, pp. 113–120 (2007)Google Scholar
  15. 15.
    Mutlu, B., Forlizzi, J.: Robots in organizations: Workflow, social, and environmental factors in human-robot interaction. In: Proceedings of HRI 2008, pp. 287–294 (2008)Google Scholar
  16. 16.
    Ostermann, F., Timpf, S.: Modelling space appropriation in public parks. In: Proceedings of the 10th AGILE International Conference on Geographic Information Science (2007)Google Scholar
  17. 17.
    Pommerening, F., Wölfl, S., Westphal, M.: Right-of-way rules as use case for integrating GOLOG and qualitative reasoning. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 468–475. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connections. In: Proceedings of KR 1992, pp. 165–176 (1992)Google Scholar
  19. 19.
    Raubal, M., Moratz, R.: A functional model for affordance-based agents. In: Rome, E., Hertzberg, J., Dorffner, G. (eds.) Towards Affordance-Based Robot Control, pp. 91–105. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  21. 21.
    Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile robot motion planner. IEEE Transactions on Robotics 23(5), 874–883 (2007)CrossRefGoogle Scholar
  22. 22.
    Walters, M.L., Dautenhahn, K., te Boekhorst, R., Koay, K.L., Syrda, D.S., Nehaniv, C.L.: An empirical framework for human-robot proxemics. In: AISB 2009: Proceedings of the Symposium on New Frontiers in Human-Robot Interaction. pp. 144–149 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Knowledge and Language Processing Department of InformaticsUniversity of HamburgHamburgGermany

Personalised recommendations