CLP(QS): A Declarative Spatial Reasoning Framework

  • Mehul Bhatt
  • Jae Hee Lee
  • Carl Schultz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6899)


We propose CLP(QS), a declarative spatial reasoning framework capable of representing and reasoning about high-level, qualitative spatial knowledge about the world. We systematically formalize and implement the semantics of a range of qualitative spatial calculi using a system of non-linear polynomial equations in the context of a classical constraint logic programming framework. Whereas CLP(QS) is a general framework, we demonstrate its applicability for the domain of Computer Aided Architecture Design. With CLP(QS) serving as a prototype, we position declarative spatial reasoning as a general paradigm open to other formalizations, reinterpretations, and extensions. We argue that the accessibility of qualitative spatial representation and reasoning mechanisms via the medium of high-level, logic-based formalizations is crucial for their utility toward solving real-world problems.


geometric and qualitative spatial reasoning constraint logic programming declarative programming spatial computing architecture design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer Programs. MIT Press, Cambridge (1985)Google Scholar
  2. 2.
    Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics. Springer, Heidelberg (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Almendros-Jiménez, J.M.: Constraint logic programming over sets of spatial objects. In: Proceedings of the 2005 ACM SIGPLAN Workshop on Curry and Functional Logic Programming. ACM, New York (2005)Google Scholar
  4. 4.
    Balbiani, P., Condotta, J.-F., Ligozat, G.: On the consistency problem for the indu calculus. Journal of Applied Logic (2006)Google Scholar
  5. 5.
    Banerjee, B., Chandrasekaran, B.: A Constraint Satisfaction Framework for Executing Perceptions and Actions in Diagrammatic Reasoning. Journal of Artificial Intelligence Research (2010)Google Scholar
  6. 6.
    Bhatt, M.: Reasoning about space, actions and change: A paradigm for applications of spatial reasoning. In: Qualitative Spatial Representation and Reasoning: Trends and Future Directions. IGI Global, USA (2010)Google Scholar
  7. 7.
    Bhatt, M., Flanagan, G.: Spatio-temporal abduction for scenario and narrative completion. In: Bhatt, M., Guesgen, H., Hazarika, S. (eds.) Proceedings of the International Workshop on Spatio-Temporal Dynamics, Co-Located With the European Conference on Artificial Intelligence (ECAI 2010). ECAI Workshop Proceedings (August 2010)Google Scholar
  8. 8.
    Bhatt, M., Freksa, C.: Spatial computing for design: An artificial intelligence perspective. In: Visual and Spatial Reasoning for Design Creativity, SDC 2010 (2011)Google Scholar
  9. 9.
    Bhatt, M., Dylla, F., Hois, J.: Spatio-terminological inference for the design of ambient environments. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 371–391. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Bhatt, M., Guesgen, H., Woelfl, S., Hazarika, S.: Qualitative Spatial and Temporal Reasoning: Emerging Applications, Trends and Directions. Journal of Spatial Cognition and Computation (2011)Google Scholar
  11. 11.
    Canny, J.: Some algebraic and geometric computations in pspace. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing. ACM, New York (1988)Google Scholar
  12. 12.
    Chazelle, B., Dobkin, D.: Optimal convex decompositions. In: Computational Geometry. North-Holland, Amsterdam (1985)Google Scholar
  13. 13.
    Chomicki, J., Revesz, P.Z.: Constraint-based interoperability of spatiotemporal databases*. GeoInformatica (September 01, 1999)Google Scholar
  14. 14.
    Cohn, A.G., Renz, J.: Qualitative spatial reasoning. In: Handbook of Knowledge Representation. Elsevier, Amsterdam (2007)Google Scholar
  15. 15.
    Collins, G.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, Springer, Heidelberg (1975)Google Scholar
  16. 16.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation (1991)Google Scholar
  17. 17.
    Colmerauer, A., Roussel, P.: The birth of prolog. In: History of Programming Languages—II. ACM, New York (1996)Google Scholar
  18. 18.
    Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. Journal of Symbolic Computation (1988)Google Scholar
  19. 19.
    Dolzmann, A., Seidl, A., Sturm, T.: Redlog User Manual, 3.1 edn. (November 2006)Google Scholar
  20. 20.
    Duntsch, I., Wang, H., Mccloskey, S.: Relation algebras in qualitative spatial reasoning. Fundamenta Informaticae (1999)Google Scholar
  21. 21.
    Dylla, F., Wallgrün, J.: On generalizing orientation information in \(\mathcal{OPRA}_m\). In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, pp. 274–288. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Egenhofer, M.J., Franzosa, R.D.: Point set topological relations. International Journal of Geographical Information Systems (1991)Google Scholar
  23. 23.
    Escrig, M.T., Toledo, F.: Qualitative spatial orientation with constraint handling rules. In: ECAI (1996)Google Scholar
  24. 24.
    Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639. Springer, Heidelberg (1992)Google Scholar
  25. 25.
    Frommberger, L., Lee, J.H., Wallgrün, J.O., Dylla, F.: Composition in \(\mathcal{OPRA}_m\). Technical report, SFB/TR 8 Spatial Cognition (2007)Google Scholar
  26. 26.
    Hearn, A.C.: REDUCE User’s Manual, 3.8th edn., Santa Monica, CA, USA (February 2004)Google Scholar
  27. 27.
    Hoffmann, C.M.: Geometric and solid modeling: an introduction. Morgan Kaufmann Publishers Inc., San Francisco (1989)Google Scholar
  28. 28.
    Hong, H.: RISC-CLP (Real): logic programming with non-linear constraints over the reals. MIT Press, Cambridge (1993)Google Scholar
  29. 29.
    Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Log. Program. (1994)Google Scholar
  30. 30.
    Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The clp( r ) language and system. ACM Trans. Program. Lang. Syst. (1992)Google Scholar
  31. 31.
    Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive constraint logic programming. J. Log. Program. (2000)Google Scholar
  32. 32.
    Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint query languages. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM, New York (1990) ISBN 0-89791-352-3Google Scholar
  33. 33.
    Kowalski, R.A.: The early years of logic programming. Commun. ACM (1988)Google Scholar
  34. 34.
    Kurup, U., Cassimatis, N.: Integrating constraint satisfaction and spatial reasoning. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (2010)Google Scholar
  35. 35.
    Ladkin, P.B., Maddux, R.D.: On binary constraint networks. Technical report, Kestrel Institute (1988)Google Scholar
  36. 36.
    Lifschitz, V.: What is answer set programming? In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol. 3. AAAI Press, Menlo Park (2008)Google Scholar
  37. 37.
    Lloyd, J.W.: Practical advtanages of declarative programming. In: Alpuente, M., Barbuti, R., Ramos, I. (eds.) GULP-PRODE, vol. (1) (1994)Google Scholar
  38. 38.
    Mishra, B.: Computational real algebraic geometry. In: Handbook of Discrete and Computational Geometry. CRC Press, Inc., Boca Raton (1997)Google Scholar
  39. 39.
    Moratz, R.: Representing relative direction as a binary relation of oriented points. In: Proceeding of the 2006 Conference on ECAI 2006: 17th European Conference on Artificial Intelligence, Riva del Garda, Italy, August 29–September 1, IOS Press, Amsterdam (2006)Google Scholar
  40. 40.
    Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Principles of Knowledge Representation and Reasoning, KR 1992. Morgan Kaufmann, San Francisco (1992)Google Scholar
  41. 41.
    Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal reasoning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 534–548. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  42. 42.
    Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the region connection calculus. In: IJCAI, vol. (1) (1997)Google Scholar
  43. 43.
    Schlieder, C.: Reasoning about ordering. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988. Springer, Heidelberg (1995)Google Scholar
  44. 44.
    Schrijvers, T., Frühwirth, T.W. (eds.): Constraint Handling Rules. LNCS, vol. 5388. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  45. 45.
    Scivos, A., Nebel, B.: The finest of its class: The natural point-based ternary calculus for qualitative spatial reasoning. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 283–303. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  46. 46.
    Sturm, T.: Quantifier elimination for constraint logic programming. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 416–430. Springer, Heidelberg (2005)Google Scholar
  47. 47.
    Tarski, A.: A decision method for elementary algebra and geometry. Technical report, RAND Corporation, Santa Monica, CA (1951)Google Scholar
  48. 48.
    Tassoni, S., Foliaroni, P., Bhatt, M., De Felice, G.: Toward a Qualitative Model of 3D Visibility. In: 25th International Workshop on Qualitative Reasoning, IJCAI 2011 (2011) (position paper)Google Scholar
  49. 49.
    Uribe, T.E., Chaudhri, V., Hayes, P.J., Stickel, M.E.: Qualitative spatial reasoning for question-answering: Axiom reuse and algebraic methods. In: AAAI Spring Symposium on Mining Answers from Texts and Knowledge Bases (2002)Google Scholar
  50. 50.
    van Harmelen, F., Lifschitz, V., Porter, B. (eds.): Handbook of Knowledge Representation (Foundations of Artificial Intelligence). Elsevier Science, Amsterdam (2007)Google Scholar
  51. 51.
    Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: Swi-prolog. In: CoRR (2010)Google Scholar
  52. 52.
    Wolter, D., Lee, J.H.: Qualitative reasoning with directional relations. Artificial Intelligence (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mehul Bhatt
    • 1
  • Jae Hee Lee
    • 1
  • Carl Schultz
    • 1
  1. 1.Spatial Cognition Research Center (SFB/TR 8)University of BremenGermany

Personalised recommendations