Decentralized Intelligence in Energy Efficient Power Systems

  • Anke Weidlich
  • Harald Vogt
  • Wolfgang Krauss
  • Patrik Spiess
  • Marek Jawurek
  • Martin Johns
  • Stamatis Karnouskos
Chapter
Part of the Energy Systems book series (ENERGY)

Abstract

Power systems are increasingly built from distributed generation units and smart consumers that are able to react to grid conditions. Managing this large number of decentralized electricity sources and flexible loads represent a very huge optimization problem. Both from the regulatory and the computational perspective, no one central coordinator can optimize this overall system. Decentralized control mechanisms can, however, distribute the optimization task through price signals or market-based mechanisms. This chapter presents the concepts that enable a decentralized control of demand and supply while enhancing overall efficiency of the electricity system. It highlights both technological and business challenges that result from the realization of these concepts, and presents the state-of-the-art in the respective domains.

Keywords

Decentralized control demand response distributed generation load shifting smart grid 

References

  1. 1.
    European Union (1996) Directive 96/92/EC of the European Parliament and of the Council of 19 December 1996 concerning common rules for the internal market in electricity. Official Journal of the European Union, L 027Google Scholar
  2. 2.
    International Energy Agency (2008) World energy outlook 2008. Technical report, OECD/IEAGoogle Scholar
  3. 3.
    MacKay DJ (2009) Sustainable Energy – without the hot air. UIT Cambridge Ltd, CambridgeGoogle Scholar
  4. 4.
    Kempton W, Tomić J (2005) Vehicle-to-grid power implementation: from stabilizing the grid to supporting large scale renewable energy. J Power Sources 144(1):280–294CrossRefGoogle Scholar
  5. 5.
    United States (2007) Energy independence and security act of 2007. U.S. G.P.O., Washington DC, pp 110–140Google Scholar
  6. 6.
    European Union (2006) Directive 2006/92/EC of the European Parliament and of the Council of 5 April 2006 on energy end-use efficiency and energy services and repealing Council Directive 93/76/EEC. Official Journal of the European Union, L 114/64Google Scholar
  7. 7.
    Doty S, Turner WC (eds) (2009) Energy management handbook, 7th edn. Fairmont Press, LilburnGoogle Scholar
  8. 8.
    Nestle D, Ringelstein J (2009) Application of bidirectional energy management interfaces for distribution grid services. In: 20th international conference on electricity distribution CIRED, PragueGoogle Scholar
  9. 9.
    U.S. Department of Energy (2006) Benefits of demand response in electricity markets and recommendations for achieving them. Technical report, U.S. DOE. http://eetd.lbl.gov/ea/EMP/reports/congress-1252d.pdf
  10. 10.
    European Energy Exchange (2010) Market dataGoogle Scholar
  11. 11.
    German Federal Ministry of Economics and Technology (2010) EnergiedatenGoogle Scholar
  12. 12.
    Bye T, Hope E (2005) Deregulation of electricity markets – The Norwegian experience. Discussion papers 433, Research Department of Statistics Norway. http://ideas.repec.org/p/ssb/dispap/433.html. Accessed Sept 2005
  13. 13.
    Weidlich A (2008) Engineering interrelated electricity markets – an agent-based computational approach, Contributions to management science. Springer Physica, HeidelbergGoogle Scholar
  14. 14.
    Wilson R (1985) Incentive efficiency of double auctions. Econometrica 53(5):1101–1115MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Franke M, Rolli D, Kamper A, Dietrich A, Geyer-Schulz A, Lockemann P, Schmeck H, Weinhardt C (2005) Impacts of distributed generation from virtual power plants. In; Proceedings of the 11th annual international sustainable development research conference, Helsinki, pp 1–12Google Scholar
  16. 16.
    Kok K, Scheepers M, Kamphuis R (2009) Intelligent infrastructures, chapter intelligence in electricity networks for embedding renewables and distributed generation, Intelligent systems, control and automation: science and engineering series. Springer, Dordrecht, pp 179–209Google Scholar
  17. 17.
    Lamparter S, Becher S, Fischer J-G (2010) An agent-based market platform for smart grids. In: Proceedings of the 9th international conference on autonomous agents and multiagent system AAMAS, Toronto, pp 1689–1696Google Scholar
  18. 18.
    Akkermans H, Schreinemakers J, Kok K (2004) Microeconomic distributed control: theory and application of multi-agent electronic markets. In: CRIS 2004 – 2nd international conference on critical infrastructures, Grenoble, pp 163–176Google Scholar
  19. 19.
    Schnizler B, Neumann D, Veit D, Weinhardt C (2008) Trading grid services – a multi-attribute combinatorial approach. Eur J Oper Res (EJOR) 187(3):943–961CrossRefMATHGoogle Scholar
  20. 20.
    Block C, Fraunhofer FB, Fraunhofer PB, Briegel F, Burger N, Drzisga T, Fey B, Frey H, Hartmann J, Kern C, Muhs M, Plail B, Schetters GPL, Schöpf F, Schumann D, Schwammberger F, Terzidis O, Thiemann R, van Dinther C, von Sengbusch K, Weidlich A, Weinhardt C (2010) Internet of energy: ICT for energy markets of the future. BDI publication No. 439, Federation of German Industries (BDI e.V.), Berlin. www.bdi.eu. http://www.bdi.eu/BDI_english/download_content/ForschungTechnikUndInnovation/BDI_initiative_IoE_us-IdE-Broschure.pdf. Accessed Feb 2010
  21. 21.
    SmartGrids European Technology Platform (2008) Smartgrids: strategic deployment document for Europe’s electricity networks of the future. http://www.smartgrids.eu/documents/sra/sra_finalversion.pdf
  22. 22.
    Karnouskos S, Terzidis O (2007) Towards an information infrastructure for the future internet of energy. In: Kommunikation in Verteilten Systemen (KiVS 2007) Conference, VDE Verlag, 26 Feb 2007–02 Mar 2007Google Scholar
  23. 23.
    NIST (2010) NIST framework and roadmap for smart grid interoperability standards. Technical Report NIST Special Publication 1108, National Institute of Standards and Technology (NIST). http://www.nist.gov/public_affairs/releases/smartgrid_interoperability_final.pdf. Accessed Jan 2010
  24. 24.
    Sultanem F (1991) Using appliance signatures for monitoring residential loads atmeter panel level. IEEE Trans Power Deliv 6(4):1380–1385. doi:10.1109/61.97667, ISSN 0885–8977CrossRefGoogle Scholar
  25. 25.
    Bauer G, Stockinger K, Lukowicz P (2009) Recognizing the use-mode of kitchen appliances from their current consumption. In: EuroSSC, Heidelberg, pp 163–176Google Scholar
  26. 26.
    McGraw G (2010) Software [In]security: The smart (electric) grid and dumb cybersecurity. [online], http://www.informit.com/articles/article.aspx?p=1577441. Accessed Mar 2010
  27. 27.
    Davis M (2009) Smart grid device security – adventures in a new medium. Talk at the black hat USA 2009 conference, Las Vegas. http://www.blackhat.com/presentations/bh-usa-09/MDAVIS/BHUSA09-Davis-AMI-SLIDES.pdf. Accessed July 2009
  28. 28.
    CISCO (2009) Securing the smart grid. Whitepaper, CISCO. http://www.cisco.com/web/strategy/docs/energy/SmartGridSecurity_wp.pdf
  29. 29.
    McAfee RP, McMillan J (1987) Auctions and bidding. J Econ Lit 25(2):699–738Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anke Weidlich
    • 1
  • Harald Vogt
    • 1
  • Wolfgang Krauss
    • 1
  • Patrik Spiess
    • 1
  • Marek Jawurek
    • 1
  • Martin Johns
    • 1
  • Stamatis Karnouskos
    • 1
  1. 1.University of Applied Sciences OffenburgOffenburgGermany

Personalised recommendations