Exploratory Hierarchical Clustering for Management Zone Delineation in Precision Agriculture

  • Georg Ruß
  • Rudolf Kruse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6870)


Precision Agriculture has become an emerging topic over the last ten years. It is concerned with the integration of information technology into agricultural processes. This is especially true for the ongoing and growing data collection in agriculture. Novel ground-based sensors, aerial and satellite imagery as well as soil sampling provide large georeferenced data sets with high spatial resolution. However, these data lead to the data mining problem of finding novel and useful information in these data sets.

One of the key tasks in the area of precision agriculture is management zone delineation: given a data set of georeferenced data records with high spatial resolution, we would like to discover spatially mostly contiguous zones on the field which exhibit similar characteristics within the zones and different characteristics between zones. From a data mining point of view, this task comes down to a variant of spatial clustering with a constraint of keeping the resulting clusters spatially mostly contiguous.

This article presents a novel approach tailored to the specifics of the available data, which do not allow for using an existing algorithm. A variant of hierarchical agglomerative clustering will be presented, in conjunction with a spatial constraint. Results on available multi-variate data sets and subsets will be presented.


Spatial Autocorrelation Spatial Cluster Management Zone Soft Constraint Precision Agriculture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: SIGMOD 1998: Proc. of the 1998 ACM SIGMOD Int. Conf. on Management of Data, pp. 94–105. ACM, New York (1998)CrossRefGoogle Scholar
  2. 2.
    Assuncao, R.M., Neves, M.C., Camara, G., Da Costa Freitas, C.: Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees. International Journal of Geographical Information Science 20(7), 797–811 (2006)CrossRefGoogle Scholar
  3. 3.
    Cressie, N.A.C.: Statistics for Spatial Data. Wiley, New York (1993)zbMATHGoogle Scholar
  4. 4.
    Domsch, H., Heisig, M., Witzke, K.: Estimation of yield zones using aerial images and yield data from a few tracks of a combine harvester. Precision Agriculture 9, 321–337 (2008)CrossRefGoogle Scholar
  5. 5.
    Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) 2nd Int. Conf. on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Menlo Park (1996)Google Scholar
  6. 6.
    Estivill-Castro, V., Lee, I.: Multi-level clustering and its visualization for exploratory spatial analysis. GeoInformatica 6(2), 123–152 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fleming, K.L., Westfall, D.G., Wiens, D.W., Brodahl, M.C.: Evaluating farmer defined management zone maps for variable rate fertilizer application. Precision Agriculture 2, 201–215 (2000)CrossRefGoogle Scholar
  8. 8.
    Gold, C.M., Remmele, P.R.: Voronoi methods in GIS. In: van Kreveld, M., Roos, T., Nievergelt, J., Widmayer, P. (eds.) CISM School 1996. LNCS, vol. 1340, pp. 21–35. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Guo, D.: Regionalization with dynamically constrained agglomerative clustering and partitioning (redcap). International Journal of Geographical Information Science 22(7), 801–823 (2008)CrossRefGoogle Scholar
  10. 10.
    Guo, D., Peuquet, D.J., Gahegan, M.: ICEAGE: Interactive clustering and exploration of large and high-dimensional geodata. Geoinformatica 7(3), 229–253 (2003)CrossRefGoogle Scholar
  11. 11.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Survey 31(3), 264–323 (1999)CrossRefGoogle Scholar
  12. 12.
    Khosla, R., Inman, D., Westfall, D.G., Reich, R.M., Frasier, M., Mzuku, M., Koch, B., Hornung, A.: A synthesis of multi-disciplinary research in precision agriculture: site-specific management zones in the semi-arid western Great Plains of the USA. Precision Agriculture 9, 85–100 (2008)CrossRefGoogle Scholar
  13. 13.
    King, J.A., Dampney, P.M.R., Lark, R.M., Wheeler, H.C., Bradley, R.I., Mayr, T.R.: Mapping potential crop management zones within fields: Use of yield-map series and patterns of soil physical properties identified by electromagnetic induction sensing. Precision Agriculture 6, 167–181 (2005)CrossRefGoogle Scholar
  14. 14.
    Kitchen, N.R., Sudduth, K.A., Myers, D.B., Drummond, S.T., Hong, S.Y.: Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Computers and Electronics in Agriculture 46(1-3), 285–308 (2005), Applications of Apparent Soil Electrical Conductivity in Precision AgricultureCrossRefGoogle Scholar
  15. 15.
    Lark, R.M.: Forming spatially coherent regions by classification of multi-variate data: an example from the analysis of maps of crop yield. International Journal of Geographical Information Science 12(1), 83–98 (1998)CrossRefGoogle Scholar
  16. 16.
    Li, Y., Shi, Z., Li, F., Li, H.-Y.: Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Comput. Electron. Agric. 56(2), 174–186 (2007)CrossRefGoogle Scholar
  17. 17.
    Ng, R.T., Han, J.: Clarans: A method for clustering objects for spatial data mining. IEEE Transactions on Knowledge and Data Engineering 14(5), 1003–1016 (2002)CrossRefGoogle Scholar
  18. 18.
    Ortega, R.A., Santibáñez, O.A.: Determination of management zones in corn (zea mays l.) based on soil fertility. Computers and Electronics in Agriculture 58(1), 49–59 (2007), Precision Agriculture in Latin AmericaCrossRefGoogle Scholar
  19. 19.
    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2009) ISBN 3-900051-07-0Google Scholar
  20. 20.
    Ruß, G., Brenning, A.: Data mining in precision agriculture: Management of spatial information. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 350–359. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Ruß, G., Brenning, A.: Spatial variable importance assessment for yield prediction in precision agriculture. In: Cohen, P.R., Adams, N.M., Berthold, M.R. (eds.) IDA 2010. LNCS, vol. 6065, pp. 184–195. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Ruß, G., Kruse, R.: Feature selection for wheat yield prediction. In: Allen, T., Ellis, R., Petridis, M. (eds.) Research and Development in Intelligent Systems, vol. 26, pp. 465–478. BCS SGAI, Springer (January 2010)Google Scholar
  23. 23.
    Ruß, G., Kruse, R.: Regression models for spatial data: An example from precision agriculture. In: Perner, P. (ed.) ICDM 2010. LNCS (LNAI), vol. 6171, pp. 450–463. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Ruß, G., Kruse, R., Schneider, M.: A clustering approach for management zone delineation in precision agriculture. In: Khosla, R. (ed.) Proceedings of the Int. Conf. on Precision Agriculture 2010 (July 2010)Google Scholar
  25. 25.
    Ruß, G., Schneider, M., Kruse, R.: Hierarchical spatial clustering for management zone delineation in precision agriculture. In: Bichindaritz, I., Perner, P., Ruß, G. (eds.) Advances in Data Mining, Leipzig, Germany, pp. 95–104. IBaI Publishing (July 2010)Google Scholar
  26. 26.
    Wagstaff, K.L.: Intelligent Clustering with Instance-Level Constraints. PhD thesis, Cornell University (2002)Google Scholar
  27. 27.
    Wagstaff, K.L., Mazzoni, D., Sain, S.: HARVIST: A system for agricultural and weather studies using advanced statistical models. In: Proceedings of the Earth-Sun Systems Technology Conference (2005)Google Scholar
  28. 28.
    Wang, W., Yang, J., Muntz, R.: Sting: A statistical information grid approach to spatial data mining. In: Proceedings of the 23rd VLBD Conference, Athens, Greece, pp. 186–195. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Georg Ruß
    • 1
  • Rudolf Kruse
    • 1
  1. 1.Otto-von-Guericke-Universität MagdeburgGermany

Personalised recommendations