Advertisement

Symbolic Algorithm for Generation Büchi Automata from LTL Formulas

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6873)

Abstract

Model checking is a new techology developed to ensure the correctness of concurrent systems. In this paper we consider one of the algorithms included in this techology, an algorithm for constructing Büchi automaton from a given LTL formula. This algorithm uses an alternating automaton as an intermediate model while translating the LTL formula to a generalized Büchi automaton. We represent data structures and data manipulations with BDD to increase algorithm effectiveness. The algorithm is compared on time and resulting Büchi automaton size with well known LTL to Büchi realizations (SPIN, LTL2BA), and it shows its effectiveness for wide class of LTL formulas.

Keywords

concurrent system verification model checking LTL BDD alternating automaton transition acceptance Büchi automaton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muller, D., Schupp, P.E.: Alternating Automata on Infinite Objects, Determinacy and Rabin’s Theorem. In: Perrin, D., Nivat, M. (eds.) Proc. Automata on Infinite Words – École de Printemps d’Informatique Théorique (EPIT 1984). LNCS, vol. 192, pp. 99–107 (1985)Google Scholar
  2. 2.
    Vardi, M.: Nontraditional Applications of Automata Theory. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Tauriainen, H.: Automata and Linear Temporal Logic: Translations with Trace-Based Acceptance. PhD.Thesis, Helsinki University of Technology (2006)Google Scholar
  5. 5.
    Giannakopoulou, D., Lerda, F.: From States to Transitions: Improving Translation of LTL Formulae to Büchi Automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Rohde, G.S.: Alternating Automata and the Temporal Logic of Ordinals. PhD. Thesis in Mathematics, University of Illinois at Urbana-Champaign (1997)Google Scholar
  7. 7.
    Karpov, Y.G.: Model Checking: Verification of Parallel and Distributed Program Systems, p. 560. SPb:BHV-Petersburg (2010) (in Russian)Google Scholar
  8. 8.
    Holzmann, G.: Spin Model Checker. The Primer and Reference Manual, p. 608. Addison-Wesley, Reading (2003)Google Scholar
  9. 9.
    Daniele, M., Giunchiglia, F., Vardi, M.: Improved automata generation for linear temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Somenzi, F., Bloem, R.: Efficient Büchi Automata from LTL Formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Distributed Computing and Networking DepartmentSaint-Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations