Efficient Computation of Persistent Homology for Cubical Data

Chapter

Abstract

In this paper we present an efficient framework for computation of persistent homology of cubical data in arbitrary dimensions. An existing algorithm using simplicial complexes is adapted to the setting of cubical complexes. The proposed approach enables efficient application of persistent homology in domains where the data is naturally given in a cubical form. By avoiding triangulation of the data, we significantly reduce the size of the complex. We also present a data-structure designed to compactly store and quickly manipulate cubical complexes. By means of numerical experiments, we show high speed and memory efficiency of our approach. We compare our framework to other available implementations, showing its superiority. Finally, we report performance on selected 3D and 4D data-sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajaj, C.L., Pascucci, V., Schikore, D.: The contour spectrum. In: Proceedings of IEEE Visualization, pp. 167–174 (1997)Google Scholar
  2. 2.
    Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. In: Proceedings of IEEE Visualization, vol. 16, pp. 1251–1260 (2010)Google Scholar
  3. 3.
    Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imaging Vis. 32(2), 161–179 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Carr, H., Snoeyink, J., van de Panne, M.: Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. Comput. Geom. 43(1), 42–58 (2010)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, C., Kerber, M.: An output-sensitive algorithm for persistent homology. In: Proceedings of the 27th annual symposium on Computational geometry 207–215 (2011)Google Scholar
  6. 6.
    Chen, C., Kerber, M.: Persistent homology computation with a twist. In: 27th European Workshop on Computational Geometry (EuroCG 2011) (2011)Google Scholar
  7. 7.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Computer Assisted Proofs in Dynamics: CAPD Homology Library, http://capd.ii.uj.edu.pl.
  9. 9.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT, MA (2009)MATHGoogle Scholar
  10. 10.
    Edelsbrunner, H., Harer, J.: Computational topology, an introduction. American Mathematical Society, RI (2010)MATHGoogle Scholar
  11. 11.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)MATHMathSciNetGoogle Scholar
  12. 12.
    Freedman D., Chen C.: Algebraic topology for computer vision, Computer Vision. Nova Science (to appear)Google Scholar
  13. 13.
    Freudenthal, H.: Simplizialzerlegungen von beschränkter Flachheit. Ann. Math. 43(3), 580–582 (1942)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of morse-smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13(6), 1440–1447 (2007)CrossRefGoogle Scholar
  15. 15.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational homology, vol. 157 of Applied Mathematical Sciences. Springer, Berlin (2004)Google Scholar
  16. 16.
    Kedenburg, G.: Persistent Cubical Homology. Master’s thesis, University of Hamburg (2010)Google Scholar
  17. 17.
    Kershner, R.: The number of circles covering a set. Am. J. Math. 61(3), 665–671 (1939)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Milosavljevic, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: Proceedings of the 27th annual symposium on Computational geometry (2011)Google Scholar
  19. 19.
    Morozov, D.: Dionysus: A C++ library for computing persistent homology. http://www.mrzv.org/software/dionysus/
  20. 20.
    Morozov, D.: Persistence algorithm takes cubic time in worst case. BioGeometry News. Dept. Comput. Sci., Duke Univ., Durham, NC (2005)Google Scholar
  21. 21.
    Mrozek, M., Wanner, T.: Coreduction homology algorithm for inclusions and persistent homology. Comput. Math. Appl. 2812–2833 (2010)Google Scholar
  22. 22.
    Mrozek, M., Zelawski, M., Gryglewski, A., Han, S., Krajniak, A.: Homological methods for extraction and analysis of linear features in multidimensional images. Pattern Recogn, 45(1), 285–298 (2012). doiL 10.1016/j.patcog.2011.04.020Google Scholar
  23. 23.
    Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, CA (1984)MATHGoogle Scholar
  24. 24.
    Pascucci, V., Scorzelli, G., Bremer, P.-T., Mascarenhas, A.: Robust on-line computation of reeb graphs: simplicity and speed. ACM Trans. Graph. 26(58), 1–8 (2007)Google Scholar
  25. 25.
    Strömbom, D.: Persistent homology in the cubical setting: theory, implementations and applications. Master’s thesis, Luleå University of Technology (2007)Google Scholar
  26. 26.
    Zong, C.: What is known about unit cubes. Bull. Am. Math. Soc. 42(2005), 181–211 (2005)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Jagiellonian UniversityKrakówPoland
  2. 2.Vienna University of TechnologyViennaAustria
  3. 3.Institute of Science and TechnologyKlosterneuburgAustria
  4. 4.VRVis Center for Virtual Reality and Visualization Research-LtdViennaAustria

Personalised recommendations