Efficient Computation of a Hierarchy of Discrete 3D Gradient Vector Fields

  • David Günther
  • Jan Reininghaus
  • Steffen Prohaska
  • Tino Weinkauf
  • Hans-Christian Hege
Part of the Mathematics and Visualization book series (MATHVISUAL)


This paper introduces a novel combinatorial algorithm to compute a hierarchy of discrete gradient vector fields for three-dimensional scalar fields. The hierarchy is defined by an importance measure and represents the combinatorial gradient flow at different levels of detail. The presented algorithm is based on Forman’s discrete Morse theory, which guarantees topological consistency and algorithmic robustness. In contrast to previous work, our algorithm combines memory and runtime efficiency. It thereby lends itself to the analysis of large data sets. A discrete gradient vector field is also a compact representation of the underlying extremal structures – the critical points, separation lines and surfaces. Given a certain level of detail, an explicit geometric representation of these structures can be extracted using simple and fast graph algorithms.


Gradient Vector Memory Consumption Separation Line Critical Node Separation Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Max-Planck Institute of Biochemistry, Martinsried, and the DFG Emmy-Noether research program. The authors would like to thank Daniel Baum, Ingrid Hotz, Jens Kasten, Michael Koppitz, Falko Marquardt, and Jan Sahner for many fruitful discussions on this topic.


  1. 1.
    Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simplification of discrete functions on surfaces. CoRR abs/1001.1269 (2010)Google Scholar
  2. 2.
    Cayley, A.: On contour and slope lines. Lond. Edinb. Dublin Phil. Mag. J. Sci. 18, 264–268 (1859)Google Scholar
  3. 3.
    Chari, M.K.: On discrete Morse functions and combinatorial decompositions. Discrete Math. 217(1-3), 101–113 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Gröller, M.E., Glaeser, G., Kastner, J.: Stagbeetle.
  7. 7.
    Gyulassy, A.: Combinatorial construction of Morse-Smale complexes for data analysis and visualization. Ph.D. thesis, University of California, Davis (2008)Google Scholar
  8. 8.
    Gyulassy, A., Bremer, P.T., Pascucci, V., Hamann, B.: Practical Considerations in Morse-Smale Complex Computation, chap. 6, pp. 67–78. Springer, Berlin (2009)Google Scholar
  9. 9.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge, U.K. (2002)zbMATHGoogle Scholar
  10. 10.
    Joswig, M., Pfetsch, M.E.: Computing optimal Morse matchings. SIAM J. Discret. Math. 20(1), 11–25 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    King, H., Knudson, K., Mramor, N.: Generating discrete Morse functions from point data. Exp. Math. 14(4), 435–444 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lewiner, T.: Geometric discrete Morse complexes. Ph.D. thesis, Dept. of Mathematics, PUC-Rio (2005)Google Scholar
  13. 13.
    Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26(3), 221–233 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Maxwell, J.C.: On hills and dales. Lond. Edinb. Dublin Phil. Mag. J. Sci. 40, 421–425 (1870)Google Scholar
  15. 15.
    Milnor, J.: Topology from the differentiable viewpoint. University Press, Virginia (1965)zbMATHGoogle Scholar
  16. 16.
    Reininghaus, J., Günther, D., Hotz, I., Prohaska, S., Hege, H.C.: TADD: A computational framework for data analysis using discrete Morse theory. In: Mathematical Software – ICMS 2010, pp. 198–208. Springer, Berlin (2010)Google Scholar
  17. 17.
    Reininghaus, J., Kasten, J., Weinkauf, T., Hotz, I.: Combinatorial feature flow fields: Tracking critical points in discrete scalar fields. Tech. Rep. 11-02, Zuse Institute Berlin (2011)Google Scholar
  18. 18.
    Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011). doi:10.1109/TPAMI.2011.95CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Stalling, D., Steinke, T.: Visualization of Vector Fields in Quantum Chemistry. Zuse Institute, Berlin (1996)Google Scholar
  21. 21.
    Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Saddle Connectors - an approach to visualizing the topological skeleton of complex 3D vector fields. In: Proceedings IEEE Visualization 2003, pp. 225–232. Seattle, U.S.A. (2003)Google Scholar
  22. 22.
    Weinkauf, T.: Extraction of topological structures in 2d and 3d vector fields. Ph.D. thesis, University Magdeburg and Zuse Institute Berlin (2008)Google Scholar
  23. 23.
    Weinkauf, T., Gingold, Y., Sorkine, O.: Topology-based smoothing of 2D scalar fields with { C}1-continuity. Computer Graphics Forum (Proc. EuroVis) 29(3), 1221–1230 (2010)Google Scholar
  24. 24.
    Zomorodian, A.: Computing and comprehending topology: Persistence and hierarchical Morse complexes. Ph.D. thesis, Urbana, Illinois (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Günther
    • 1
  • Jan Reininghaus
    • 1
  • Steffen Prohaska
    • 1
  • Tino Weinkauf
    • 2
  • Hans-Christian Hege
    • 1
  1. 1.Zuse Institute BerlinBerlinGermany
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations