Filtering of FTLE for Visualizing Spatial Separation in Unsteady 3D Flow

  • Armin Pobitzer
  • Ronald Peikert
  • Raphael Fuchs
  • Holger Theisel
  • Helwig Hauser
Chapter
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

In many cases, feature detection for flow visualization is structured in two phases: first candidate identification, and then filtering. With this paper, we propose to use the directional information contained in the finite-time Lyapunov exponents (FTLE) computation, in order to filter the FTLE field. In this way we focus on those separation structures that delineate flow compartments which develop into different spatial locations, as compared to those that separate parallel flows of different speed. We provide a discussion of the underlying theory and our related considerations. We derive a new filtering scheme and demonstrate its effect in the context of several selected fluid flow cases, especially in comparison with unfiltered FTLE visualization. Since previous work has provided insight with respect to the studied flow patterns, we are able to provide a discussion of the resulting visible separation structures.

Keywords

Lyapunov Exponent Singular Value Decomposition Spatial Separation Spectral Element Method Path Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asimov, D.: Notes on the topology of vector fields and flows. Tech. rep., NASA Ames Research Center (1993). RNR-93-003Google Scholar
  2. 2.
    Bürger, R., Muigg, P., Doleisch, H., Hauser, H.: Interactive cross-detector analysis of vortical flow data. In: Proceedings of the 5th International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007). IEEE Computer Society, Zurich, Switzerland, pp. 98–110 (2007)Google Scholar
  3. 3.
    Bürger, R., Muigg, P., Ilčík, M., Doleisch, H., Hauser, H.: Integrating local feature detectors in the interactive visual analysis of flow simulation data. In: Museth, K., Möller, T., Ynnerman A. (eds.) Data Visualization 2007: Proceedings of the 9th Joint Eurographics – IEEE vgtc Symposium on Visualization (EuroVis 2007). Eurographics Association, Norrköping, Sweden, pp. 171–178. A K Peters (2007)Google Scholar
  4. 4.
    Doleisch, H.: SimVis: Interactive visual analysis of large and time-dependent 3D simulation data. In: Proceedings of the 2007 Winter Conference on Simulation (WSC 2007), pp. 712–720 (2007)Google Scholar
  5. 5.
    Doleisch, H., Hauser, H.: Smooth brushing for focus+context visualization of simulation data in 3D. J. WSCG 11(1–2), 147–154 (2001)Google Scholar
  6. 6.
    Fuchs, R., Kemmler, J., Schindler, B., Waser, J., Sadlo, F., Hauser, H., Peikert, R.: Toward a lagrangian vector field topology. Comput. Graph. Forum 29(3), 1163–1172 (2010)CrossRefGoogle Scholar
  7. 7.
    Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans. Vis. Comput. Graph. 13(6), 1464–1471 (2007)CrossRefGoogle Scholar
  8. 8.
    Garth, C., Li, G.S., Tricoche, X., Hansen, C.D., Hagen, H.: Visualization of coherent structures in transient 2D flows. In: Hege, H.C., Polthier, K., Scheuermann G. (eds.) Topology-Based Methods in Visualization II: Proceedings of the 2nd TopoInVis Workshop (TopoInVis 2007), pp. 1–13 (2009)Google Scholar
  9. 9.
    Gill, P.E., Murray, W., Wright, M.: Numerical Linear Algebra and Optimization, 1st edn. Addison Wesley Publishing Company, Boston MA, USA (1991)MATHGoogle Scholar
  10. 10.
    Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three-dimensional vector fields. In: Proceedings of IEEE Visualization ’91. IEEE Computer Society, San Diego, California USA, pp. 33–40 (1991)Google Scholar
  11. 11.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Studies in Mathematical Sciences. The Johns Hopkins University Press (1996)MATHGoogle Scholar
  12. 12.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Springer Series in Computational Mathematics. Berlin Heidelberg, Germany, Springer (1993)MATHGoogle Scholar
  13. 13.
    Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248–277 (2001)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Haller, G.: Lagrangian coherent structures from approximate velocity data. Phys. Fluids 14, 1851–1861 (2002)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Haller, G., Sapsis, T.: Lagrangian coherent structures and the smallest finite-time lyapunov exponent. Chaos 21(21), pp. 1–7, (2010)Google Scholar
  16. 16.
    Hayes, M.: On strain and straining. Arch. Rational Mech. Anal. 100(3), 265–273 (1988)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. IEEE Computer 22(8), 27–36 (1989)CrossRefGoogle Scholar
  18. 18.
    Helman, J., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Comput. Graph. Appl. 11, 36–46 (1991)CrossRefGoogle Scholar
  19. 19.
    Jordan, D.W., Smith, P.: Nonlinear ordinary differential equations : an introduction for scientists and engineers, 4th edn. Oxford Applied and Engineering Mathematics. Oxford University Press, Oxford, UK (2007)Google Scholar
  20. 20.
    Kasten, J., Petz, C., Hotz, I., Noack, B., Hege, H.C.: Localized finite-time Lyapunov exponent for unsteady flow analysis. In proceedings of VMV’09 Braunschwag, Germany, pp. 265–274 (2009)Google Scholar
  21. 21.
    Lipinski, D., Mohseni, K.: A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures. Chaos 20(1), 017,504 (2010)Google Scholar
  22. 22.
    Mase, G.E.: Continuum Mechanics, 1st edn. Schaum’s Outline Series. McGraw-Hill, New York NY, USA (1969)Google Scholar
  23. 23.
    Obermaier, H., Hering-Bertram, M., Kuhnert, J., Hagen, H.: Volume deformations in grid-less flow simulations. Comput. Graph. Forum 28(3), 879–886 (2009)CrossRefGoogle Scholar
  24. 24.
    Perry, A., Chong, M.: Topology of flow patterns in vortex motions and turbulence. Appl. Sci. Res. 53, 357–374 (1994)CrossRefMATHGoogle Scholar
  25. 25.
    Pobitzer, A., Peikert, R., Fuchs, R., Schindler, B., Kuhn, A., Theisel, H., Matković, K., Hauser, H.: On the way towards topology-based visualization of unsteady flow – the state of the art. In: Eurographics 2010 – State of the Art Reports. Eurographics Association, Norrköping, Sweden (2010)Google Scholar
  26. 26.
    Sadlo, F., Peikert, R.: Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Trans. Vis. Comput. Graph. 13(6), 1456–1463 (2007)CrossRefGoogle Scholar
  27. 27.
    Sadlo, F., Peikert, R.: Visualizing Lagrangian coherent structures: a comparison to vector field topology. In: Hege, H.C., Polthier, K., Scheuermann G. (eds.) Topology-Based Methods in Visualization II: Proceedings of the 2nd TopoInVis Workshop (TopoInVis 2007), pp. 15–29, Grimma, Germany (2009)Google Scholar
  28. 28.
    Sadlo, F., Peikert, R.: Time-dependent visualization of Lagrangian coherent structures by grid advection. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny J. (eds.) Topological Methods in Data Analysis and Visualization: Theory, Algorithms and Applications. Berlin Heidelberg, Germany, Springer (2011)Google Scholar
  29. 29.
    Shadden, S., Lekien, F., Marsden, J.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271–304 (2005). DOI 10.1016/j.physd.2005.10.007CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Shi, K., Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Visualizing transport structures of time-dependent flow fields. Comput. Graph. Appl. 28(5), 24–36 (2008)CrossRefGoogle Scholar
  31. 31.
    Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Topological methods for 2D time-dependent vector fields based on stream lines and path lines. IEEE Trans. Vis. Comput. Graph. 11(4), 383–394 (2005)CrossRefGoogle Scholar
  32. 32.
    Wasberg, C.E.: Post-processing of marginally resolved spectral element data. In: Rønquist E.M. (ed.) ICOSAHOM Conference Proceedings. Berlin Heidelberg, Germany, Springer (2011)Google Scholar
  33. 33.
    Wiebel, A., Chan, R., Wolf, C., Robitzki, A., Stevens, A., Scheuermann, G.: Topological flow structures in a mathematical model for rotation-mediated cell aggregation. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny J. (eds.) Topological Methods in Data Analysis and Visualization: Theory, Algorithms and Applications. Berlin Heidelberg, Germany, Springer (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Armin Pobitzer
    • 1
  • Ronald Peikert
    • 2
  • Raphael Fuchs
    • 2
  • Holger Theisel
    • 3
  • Helwig Hauser
    • 1
  1. 1.Department of informaticsUniversity of BergenBergenNorway
  2. 2.Scientific Visualization Group, ETH ZurichZurichSwitzerland
  3. 3.Department of Simutation and GraphicsUniversity of MagdeburgMagdeburgGermany

Personalised recommendations