Automatic Breast Cancer Diagnosis Based on K-Means Clustering and Adaptive Thresholding Hybrid Segmentation

  • Paweł Filipczuk
  • Marek Kowal
  • Andrzej Obuchowicz
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 102)

Summary

The paper presents k-means based hybrid segmentation method for breast cancer diagnosis problem. It is part of the computer system to support diagnosis based on microscope images of the fine needle biopsy. The system assumes distinguishing malignant from benign cases. Described method is an alternative to the previously presented algorithms based on fuzzy c-means clustering and competitive neural networks. However, it uses similar idea of combining clustering in RGB space with adaptive thresholding. At first, thresholding reveals objects on background. Then image is clustered with k-means algorithm to distinguish nuclei from red blood cells and other objects. Correct segmentation is crucial to obtain good quality features measurements and consequently successful diagnosis. The system of malignancy classification was tested on a set of real case medical images with promising results.

Keywords

Breast Cancer Image Segmentation Breast Cancer Diagnosis Fine Needle Biopsy Sequential Forward Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images. IEEE Trans. on Biomedcial Engineering 57(4), 841–852 (2010)CrossRefGoogle Scholar
  2. 2.
    Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Chapman & Hall, Boca Raton (1993)Google Scholar
  3. 3.
    Clocksin, W.F.: Automatic segmentation of overlapping nuclei with high background variation using robust estimation and flexible contour models. In: Proc 12th Int. Conf. Image Analysis and Processing, ICIAPŠ 2003, pp. 682–687 (2003)Google Scholar
  4. 4.
    Cloppet, F., Boucher, A.: Segmentation of overlapping/aggregating nuclei cells in biological images. In: Proc. 19th Int. Conf. on Pattern Recognition, ICPR 2003, pp. 1–4 (2008)Google Scholar
  5. 5.
    Filipczuk, P., Kowal, M., Marciniak, A.: Feature selection for breast cancer malignancy classification problem. J. Medical Informatics & Technologies 15, 193–199 (2010)Google Scholar
  6. 6.
    Gil, J., Wu, H., Wang, B.Y.: Image analysis and morphometry in the diagnosis of breast cancer. J. Microsc. Res. Tech. 59, 109–118 (2002)CrossRefGoogle Scholar
  7. 7.
    Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological Image Analysis: A Review. IEEE Reviews in Biomedical Engineering 2, 147–171 (2009)CrossRefGoogle Scholar
  8. 8.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, New Jersey (2001)Google Scholar
  9. 9.
    Hrebień, M., Steć, P., Obuchowicz, A., Nieczkowski, T.: Segmentation of breast cancer fine needle biopsy cytological images. Int. J. Appl. Math and Comp. Sci. 18(2), 159–170 (2008)CrossRefGoogle Scholar
  10. 10.
    Jeleń, Ł., Fevens, T., Krzyżak, A.: Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies. Int. J. Appl. Math and Comp. Sci. 18(1), 75–83 (2008)CrossRefGoogle Scholar
  11. 11.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 881–892 (2002)CrossRefGoogle Scholar
  12. 12.
    Kowal, M., Korbicz, J.: Segmentation of breast cancer fine needle biopsy cytological images using fuzzy clustering. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning I. Studies in Computational Intelligence, vol. 262, pp. 405–417. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Information Theory 28(2), 129–137 (1982)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  15. 15.
    Marciniak, A., Obuchowicza, A., Monczak, R., Kołodziński, M.: Cytomorphometry of Fine Needle Biopsy Material from the Breast Cancer. In: Proc. 4th Int. Conf. on Computer Recognition Systems CORES 2005, pp. 603–609. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)MATHGoogle Scholar
  17. 17.
    Obuchowicz, A., Hrebień, M., Nieczkowski, T., Marciniak, A.: Computational intelligence techniques in image segmentation for cytopathology. In: Smoliñski, T.G., Milanova, M.G., Hassanien, A.-G. (eds.) Computational Intelligence in Biomedicine and Bioinformatics: Current Trends and Applications, pp. 169–199. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man. and Cyber. (9), 62–66 (1979)CrossRefGoogle Scholar
  19. 19.
    Peng, Y., Park, M., Xu, M., Luo, S., Jin, J.S., Cui, Y., Wong, F.W.S., Santos, L.D.: Clustering nuclei using machine learning techniques. In: Proc. Int. IEEE/ICME Conf. on Complex Medical Engineering, pp. 52–57 (2010)Google Scholar
  20. 20.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electronic Imaging 13(1), 146–165 (2003)CrossRefGoogle Scholar
  21. 21.
    Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall, New Jersey (2002)Google Scholar
  22. 22.
    Śmietanski, J., Tadeusiewicz, R., Łuczyńska, E.: Texture Analysis in Perfusion Images of Prostate Cancer - a Case Study. Int. J. Appl. Math and Comp. Sci. 20(1), 149–156 (2010)CrossRefGoogle Scholar
  23. 23.
    Suri, J.S., Setarhdan, K., Singh, S.: Advanced Algorithmic Approaches to Medical Image Segmentation. Springer, London (2002)CrossRefGoogle Scholar
  24. 24.
    Underwood, J.C.E.: Introduction to biopsy interpretation and surgical pathology. Springer, London (1987)Google Scholar
  25. 25.
    Wolberg, W.H., Street, W.N.: Mangasarian: Breast cytology diagnosis via digital image analysis. Analytical and Quantitative Cytology and Histology 15, 396–404 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paweł Filipczuk
    • 1
  • Marek Kowal
    • 1
  • Andrzej Obuchowicz
    • 1
  1. 1.Institute of Control and Computation EngineeringUniveristy of Zielona GóraPoland

Personalised recommendations