A Novel Approach of Robust Active Compliance for Robot Fingers

  • Jamaludin Jalani
  • Said Ghani Khan
  • Guido Herrmann
  • Chris Melhuish
Part of the Communications in Computer and Information Science book series (CCIS, volume 212)

Abstract

In order to guarantee that grasping with robot fingers are safe when interacting with a human or a touched object, the robot fingers have to be compliant. In this study, a novel active and robust compliant control technique is proposed by employing an Integral Sliding Mode Control (ISMC). The ISMC allows us to use a model reference approach for which a virtual mass-spring damper can be introduced to enable compliant control. The performance of the ISMC is validated for the constrained underactuated BERUL (Bristol Elumotion Robot fingers) fingers. The results show that the approach is feasible for compliance interaction with objects of different softness. Moreover, the compliance results show that the ISMC is robust towards nonlinearities and uncertainties in the robot fingers in particular friction and stiction.

Keywords

Integral Sliding Mode Controller Active Compliance Control Underactuated Robot Fingers Robust Control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herrmann, G., Melhuish, C.: Towards safety in human robot interaction. International Journal of Social Robotics 2, 217–219 (2010)CrossRefGoogle Scholar
  2. 2.
    Yoshikawa, T.: Multifingered robot hands: Control for grasping and manipulation. Annual Reviews in Control 34(2), 199–208 (2010)CrossRefGoogle Scholar
  3. 3.
    Sisbot, E., Marin-Urias, L., Broqure, X., Sidobre, D., Alami, R.: Synthesizing robot motions adapted to human presence. International Journal of Social Robotics 2, 329–343 (2010)CrossRefGoogle Scholar
  4. 4.
    Wang, W., Loh, R.N., Gu, E.Y.: Passive compliance versus active compliance in robot-based automated assembly systems. Industrial Robot: An International Journal 25(1), 48–57 (1998)CrossRefGoogle Scholar
  5. 5.
    Cutkosky, M.R.: Robotic Grasping and Fine Manipulation. Kluwer Academic Publishers, Norwell (1985)CrossRefGoogle Scholar
  6. 6.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefMATHGoogle Scholar
  7. 7.
    Johnson, K.L.: Contact Problems in the Classical Theory of Elasticity. Alphen aan den Rijn, The Netherlands, Sijthoff and Noordhoff, Netherland (1980)Google Scholar
  8. 8.
    Shimoga, K., Goldenberg, A.: Soft robotic fingertips. The International Journal of Robotics Research 15(4), 320–334 (1996)CrossRefGoogle Scholar
  9. 9.
    Biagiotti, L., Melchiorri, C., Tiezzi, P., Vassura, G.: Modelling and identification of soft pads for robotic hands. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 2786–2791 (2005)Google Scholar
  10. 10.
    Liu, H., Hirzinger, G.: Cartesian impedance control for the dlr hand. In: Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1999 (1999)Google Scholar
  11. 11.
    Kugi, A., Ott, C., Albu-Schaffer, A., Hirzinger, G.: On the passivity-based impedance control of flexible joint robots. IEEE Transactions on Robotics 24(2), 416–429 (2008)CrossRefGoogle Scholar
  12. 12.
    Albu-Schaffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. The International Journal of Robotics Research 26(1), 23–39 (2007)CrossRefMATHGoogle Scholar
  13. 13.
    Chen, Z., Lii, N., Wimboeck, T., Fan, S., Jin, M., Borst, C., Liu, H.: Experimental study on impedance control for the five-finger dexterous robot hand dlr-hit ii. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5867–5874 (2010)Google Scholar
  14. 14.
    Okada, M., Nakamura, Y., Hoshino, S.: Design of active/passive hybrid compliance in the frequency domain-shaping dynamic compliance of humanoid shoulder mechanism. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2000 (2000)Google Scholar
  15. 15.
    Montana, D.J.: The Kinematics of Contact and Grasp. The International Journal of Robotics Research 7(3), 17–32 (1988)CrossRefGoogle Scholar
  16. 16.
    Kobayashi, K., Yoshikawa, T.: Controllability of Under-Actuated Planar Manipulators with One Unactuated Joint. The International Journal of Robotics Research 21(5-6), 555–561 (2002)CrossRefGoogle Scholar
  17. 17.
    Jalani, J., Herrmann, G., Melhuish, C.: Robust trajectory following for underactuated robot fingers. In: UKACC International Conference on Control 2010, pp. 495–500 (September 2010)Google Scholar
  18. 18.
    Canudas De Wit, C., Ge, S.: Adaptive friction compensation for systems with generalized velocity/position friction dependency. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 3, pp. 2465–2470 (December 1997)Google Scholar
  19. 19.
    Ge, S., Lee, T., Ren, S.: Adaptive friction compensation of servo mechanisms. In: Proceedings of the 1999 IEEE International Conference on Control Applications, vol. 2, pp. 1175–1180 (1999)Google Scholar
  20. 20.
    Shi, J., Liu, H., Bajcinca, N.: Robust control of robotic manipulators based on integral sliding mode. International Journal of Control 81, 1537–1548 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yokoyama, M., Kim, G.-N., Tsuchiya, M.: Integral Sliding Mode Control with Anti-windup Compensation and Its Application to a Power Assist System. Journal of Vibration and Control 16, 503–512 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Defoort, M., Floquet, T., Kokosy, A., Perruquetti, W.: Integral sliding mode control for trajectory tracking of a unicycle type mobile robot. Integr. Comput.-Aided Eng. 13(3), 277–288 (2006)Google Scholar
  23. 23.
    Eker, I., Akinal, S.: Sliding mode control with integral augmented sliding surface: design and experimental application to an electromechanical system. Electrical Engineering (Archiv fur Elektrotechnik) 90(3), 189–197 (2008)CrossRefGoogle Scholar
  24. 24.
    Chang, J.-L.: Dynamic output integral sliding-mode control with disturbance attenuation. IEEE Transactions on Automatic Control 54, 2653–2658 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Jalani, J., Herrmann, G., Melhuish, C.: Concept for robust compliance control of robot fingers. In: Proceeding of 11th Conference Towards Autonomous Robotic Systems, pp. 97–102 (May 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jamaludin Jalani
    • 1
    • 2
  • Said Ghani Khan
    • 2
    • 3
  • Guido Herrmann
    • 1
    • 2
  • Chris Melhuish
    • 1
    • 2
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of Bristol, Queen’s Building University Walk BristolUK
  2. 2.Bristol Robotics Laboratory (BRL) DuPont Building Bristol Business Park BristolUK
  3. 3.University of the West of England Coldharbour Lane Frenchay BristolUK

Personalised recommendations