Improved Identity-Based Identification and Signature Schemes Using Quasi-Dyadic Goppa Codes

  • Sidi Mohamed El Yousfi Alaoui
  • Pierre-Louis Cayrel
  • Meziani Mohammed
Part of the Communications in Computer and Information Science book series (CCIS, volume 200)

Abstract

In this paper, we present an improved version of an identity-based identification scheme based on error-correcting codes. Our scheme combines the Courtois-Finiasz-Sendrier signature scheme using quasi-dyadic codes (QD-CFS) proposed in [2] and the identification scheme by Stern [18]. Following the construction proposed in [5], we obtain an identity-based identification scheme which has the advantage to reduce a public data size, the communication complexity and the signature length.

Keywords

Error-Correcting codes Identity-based Cryptography Quasi-dyadic Goppa codes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barreto, P.S.L.M., Cayrel, P.-L., Hoffman, G., Misoczki, R.: GPU implementation of the quasi-dyadic CFS signature scheme (2010) (preprint)Google Scholar
  2. 2.
    Barreto, P.S.L.M., Cayrel, P.-L., Misoczki, R., Niebuhr, R.: Quasi-dyadic CFS signature. In: Inscrypt 2010 (2010)Google Scholar
  3. 3.
    Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(3), 384–386 (1978)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cayrel, P.-L., Gaborit, P., Galindo, D., Girault, M.: Improved identity-based identification using correcting codes. CoRR, abs/0903.0069 (2009)Google Scholar
  5. 5.
    Cayrel, P.-L., Gaborit, P., Girault, M.: Identity-based identification and signature schemes using correcting codes. In: Augot, D., Sendrier, N., Tillich, J.-P. (eds.) International Workshop on Coding and Cryptography, WCC 2007, pp. 69–78 (2007)Google Scholar
  6. 6.
    Cayrel, P.-L., Gaborit, P., Prouff, E.: Secure implementation of the Stern authentication and signature schemes for low-resource devices. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 191–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Faugére, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: A distinguisher for high rate mceliece cryptosystem – extended abstract. In: Véron, P. (ed.) Yet Another Conference on Cryptography, YACC 2010, Toulon, pp. 1–4 (2010)Google Scholar
  9. 9.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  10. 10.
    Finiasz, M.: Parallel-CFS, strengthening the CFS mceliece-based signature scheme. In: SAC 2010 (2010) (to appear)Google Scholar
  11. 11.
    Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009), http://eprint.iacr.org/2009/414.pdf CrossRefGoogle Scholar
  12. 12.
    Macwilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes (1978)Google Scholar
  13. 13.
    McEliece, R.: A public-key cryptosystem based on algebraic coding theory. The Deep Space Network Progress Report, DSN PR 42–44 (1978), http://ipnpr.jpl.nasa.gov/progressreport2/42-44/44N.PDF
  14. 14.
    Misoczki, P.S.L.M., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory 15(2), 159–166 (1986)MathSciNetMATHGoogle Scholar
  16. 16.
    Schechter, S.: On the inversion of certain matrices. Mathematical Tables and Other Aids to Computation 13(66), 73–77 (1959), http://www.jstor.org/stable/2001955 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  18. 18.
    Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sidi Mohamed El Yousfi Alaoui
    • 1
  • Pierre-Louis Cayrel
    • 1
  • Meziani Mohammed
    • 1
  1. 1.CASED – Center for Advanced Security Research DarmstadtDarmstadtGermany

Personalised recommendations