Advertisement

MusicGalaxy: A Multi-focus Zoomable Interface for Multi-facet Exploration of Music Collections

  • Sebastian Stober
  • Andreas Nürnberger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6684)

Abstract

A common way to support exploratory music retrieval scenarios is to give an overview using a neighborhood-preserving projection of the collection onto two dimensions. However, neighborhood cannot always be preserved in the projection because of the inherent dimensionality reduction. Furthermore, there is usually more than one way to look at a music collection and therefore different projections might be required depending on the current task and the user’s interests. We describe an adaptive zoomable interface for exploration that addresses both problems: It makes use of a complex non-linear multi-focal zoom lens that exploits the distorted neighborhood relations introduced by the projection. We further introduce the concept of facet distances representing different aspects of music similarity. User-specific weightings of these aspects allow an adaptation according to the user’s way of exploring the collection. Following a user-centered design approach with focus on usability, a prototype system has been created by iteratively alternating between development and evaluation phases. The results of an extensive user study including gaze analysis using an eye-tracker prove that the proposed interface is helpful while at the same time being easy and intuitive to use.

Keywords

exploration interface multi-facet multi-focus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Algorithmics Group: MDSJ: Java library for multidimensional scaling (version 0.2), University of Konstanz (2009)Google Scholar
  2. 2.
    Aucouturier, J.J., Pachet, F.: Improving timbre similarity: How high is the sky? Journal of Negative Results in Speech and Audio Sciences 1(1) (2004)Google Scholar
  3. 3.
    Baumann, S., Halloran, J.: An ecological approach to multimodal subjective music similarity perception. In: Proc. of 1st Conf. on Interdisciplinary Musicology (CIM 2004), Graz, Austria (April 2004)Google Scholar
  4. 4.
    Cano, P., Kaltenbrunner, M., Gouyon, F., Batlle, E.: On the use of fastmap for audio retrieval and browsing. In: Proc. of the 3rd Int. Conf. on Music Information Retrieval (ISMIR 2002) (2002)Google Scholar
  5. 5.
    De Berg, M., Cheong, O., Van Kreveld, M., Overmars, M.: Computational geometry: algorithms and applications. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Diakopoulos, D., Vallis, O., Hochenbaum, J., Murphy, J., Kapur, A.: 21st century electronica: Mir techniques for classification and performance. In: Proc. of the 10th Int. Conf. on Music Information Retrieval (ISMIR 2009), pp. 465–469 (2009)Google Scholar
  7. 7.
    Donaldson, J., Lamere, P.: Using visualizations for music discovery. Tutorial at the 10th Int. Conf. on Music Information Retrieval (ISMIR 2009) (October 2009)Google Scholar
  8. 8.
    Gasser, M., Flexer, A.: Fm4 soundpark: Audio-based music recommendation in everyday use. In: Proc. of the 6th Sound and Music Computing Conference (SMC 2009), Porto, Portugal (2009)Google Scholar
  9. 9.
    Germer, T., Götzelmann, T., Spindler, M., Strothotte, T.: Springlens: Distributed nonlinear magnifications. In: Eurographics 2006 - Short Papers, pp. 123–126. Eurographics Association, Aire-la-Ville (2006)Google Scholar
  10. 10.
    Gleich, M.R.D., Zhukov, L., Lang, K.: The World of Music: SDP layout of high dimensional data. In: Info Vis 2005 (2005)Google Scholar
  11. 11.
    van Gulik, R., Vignoli, F.: Visual playlist generation on the artist map. In: Proc. of the 6th Int. Conf. on Music Information Retrieval (ISMIR 2005), pp. 520–523 (2005)Google Scholar
  12. 12.
    Hitchner, S., Murdoch, J., Tzanetakis, G.: Music browsing using a tabletop display. In: Proc. of the 8th Int. Conf. on Music Information Retrieval (ISMIR 2007), pp. 175–176 (2007)Google Scholar
  13. 13.
    Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proc. of the 13th ACM Symposium on Theory of Computing (STOC 1998), pp. 604–613. ACM, New York (1998)Google Scholar
  14. 14.
    Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  15. 15.
    Julia, C.F., Jorda, S.: SongExplorer: a tabletop application for exploring large collections of songs. In: Proc. of the 10th Int. Conf. on Music Information Retrieval (ISMIR 2009), pp. 675–680 (2009)Google Scholar
  16. 16.
    Knees, P., Pohle, T., Schedl, M., Widmer, G.: Exploring Music Collections in Virtual Landscapes. IEEE MultiMedia 14(3), 46–54 (2007)CrossRefGoogle Scholar
  17. 17.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43(1), 59–69 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kruskal, J., Wish, M.: Multidimensional Scaling. Sage, Thousand Oaks (1986)Google Scholar
  19. 19.
    Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: Proc. 12th Int. Conf. on Computer Vision (ICCV 2009) (2009)Google Scholar
  20. 20.
    Leitich, S., Topf, M.: Globe of music - music library visualization using geosom. In: Proc. of the 8th Int. Conf. on Music Information Retrieval (ISMIR 2007), pp. 167–170 (2007)Google Scholar
  21. 21.
    Lillie, A.S.: MusicBox: Navigating the space of your music. Master’s thesis, MIT (2008)Google Scholar
  22. 22.
    Lloyd, S.: Automatic Playlist Generation and Music Library Visualisation with Timbral Similarity Measures. Master’s thesis, Queen Mary University of London (2009)Google Scholar
  23. 23.
    Lübbers, D.: SoniXplorer: Combining visualization and auralization for content-based exploration of music collections. In: Proc. of the 6th Int. Conf. on Music Information Retrieval (ISMIR 2005), pp. 590–593 (2005)Google Scholar
  24. 24.
    Lübbers, D., Jarke, M.: Adaptive multimodal exploration of music collections. In: Proc. of the 10th Int. Conf. on Music Information Retrieval (ISMIR 2009), pp. 195–200 (2009)Google Scholar
  25. 25.
    Lux, M.: Caliph & emir: Mpeg-7 photo annotation and retrieval. In: Proc. of the 17th ACM Int. Conf. on Multimedia (MM 2009), pp. 925–926. ACM, New York (2009)Google Scholar
  26. 26.
    Mandel, M., Ellis, D.: Song-level features and support vector machines for music classification. In: Proc. of the 6th Int. Conf. on Music Information Retrieval (ISMIR 2005), pp. 594–599 (2005)Google Scholar
  27. 27.
    Martinez, J., Koenen, R., Pereira, F.: MPEG-7: The generic multimedia content description standard, part 1. IEEE MultiMedia 9(2), 78–87 (2002)CrossRefGoogle Scholar
  28. 28.
    McEnnis, D., McKay, C., Fujinaga, I., Depalle, P.: jAudio: An feature extraction library. In: Proc. of the 6th Int. Conf. on Music Information Retrieval (ISMIR 2005), pp. 600–603 (2005)Google Scholar
  29. 29.
    Mörchen, F., Ultsch, A., Nöcker, M., Stamm, C.: Databionic visualization of music collections according to perceptual distance. In: Proc. of the 6th Int. Conf. on Music Information Retrieval (ISMIR 2005), pp. 396–403 (2005)Google Scholar
  30. 30.
    Neumayer, R., Dittenbach, M., Rauber, A.: PlaySOM and PocketSOMPlayer, alternative interfaces to large music collections. In: Proc. of the 6th Int. Conf. on Music Information Retrieval (ISMIR 2005), pp. 618–623 (2005)Google Scholar
  31. 31.
    Nielsen, J.: Usability engineering. In: Tucker, A.B. (ed.) The Computer Science and Engineering Handbook, pp. 1440–1460. CRC Press, Boca Raton (1997)Google Scholar
  32. 32.
    Nürnberger, A., Klose, A.: Improving clustering and visualization of multimedia data using interactive user feedback. In: Proc. of the 9th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2002), pp. 993–999 (2002)Google Scholar
  33. 33.
    Oliver, N., Kreger-Stickles, L.: PAPA: Physiology and purpose-aware automatic playlist generation. In: Proc. of the 7th Int. Conf. on Music Information Retrieval (ISMIR 2006) (2006)Google Scholar
  34. 34.
    Pampalk, E., Dixon, S., Widmer, G.: Exploring music collections by browsing different views. In: Proc. of the 4th Int. Conf. on Music Information Retrieval (ISMIR 2003), pp. 201–208 (2003)Google Scholar
  35. 35.
    Pampalk, E., Rauber, A., Merkl, D.: Content-based organization and visualization of music archives. In: Proc. of the 10th ACM Int. Conf. on Multimedia (MULTIMEDIA 2002), pp. 570–579. ACM Press, New York (2002)CrossRefGoogle Scholar
  36. 36.
    Pauws, S., Eggen, B.: PATS: Realization and user evaluation of an automatic playlist generator. In: Proc. of the 3rd Int. Conf. on Music Information Retrieval (ISMIR 2002) (2002)Google Scholar
  37. 37.
    Rauber, A., Pampalk, E., Merkl, D.: Using psycho-acoustic models and self-organizing maps to create a hierarchical structuring of music by musical styles. In: Proc. of the 3rd Int. Conf. on Music Information Retrieval (ISMIR 2002) (2002)Google Scholar
  38. 38.
    Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Information Processing & Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  39. 39.
    Sarmento, L., Gouyon, F., Costa, B., Oliveira, E.: Visualizing networks of music artists with RAMA. In: Proc. of the Int. Conf. on Web Information Systems and Technologies, Lisbon (2009)Google Scholar
  40. 40.
    Schedl, M.: The CoMIRVA Toolkit for Visualizing Music-Related Data. Technical report, Johannes Kepler University Linz (June 2006)Google Scholar
  41. 41.
    Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. Graph 11(1), 92–99 (1992)CrossRefzbMATHGoogle Scholar
  42. 42.
    de Silva, V., Tenenbaum, J.: Sparse multidimensional scaling using landmark points. Tech. rep., Stanford University (2004)Google Scholar
  43. 43.
    de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Proc. of the 3rd Int. Conf. on Music Information Retrieval (ISMIR 2002), pp. 705–712 (2002)Google Scholar
  44. 44.
    Stavness, I., Gluck, J., Vilhan, L., Fels, S.S.: The mUSICtable: A map-based ubiquitous system for social interaction with a digital music collection. In: Kishino, F., Kitamura, Y., Kato, H., Nagata, N. (eds.) ICEC 2005. LNCS, vol. 3711, pp. 291–302. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  45. 45.
    Stober, S., Hentschel, C., Nürnberger, A.: Evaluation of adaptive springlens - a multi-focus interface for exploring multimedia collections. In: Proc. of the 6th Nordic Conference on Human-Computer Interaction (NordiCHI 2010), Reykjavik, Iceland (October 2010)Google Scholar
  46. 46.
    Stober, S., Nürnberger, A.: Towards user-adaptive structuring and organization of music collections. In: Detyniecki, M., Leiner, U., Nürnberger, A. (eds.) AMR 2008. LNCS, vol. 5811, pp. 53–65. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  47. 47.
    Stober, S., Nürnberger, A.: A multi-focus zoomable interface for multi-facet exploration of music collections. In: Proc. of the 7th Int. Symposium on Computer Music Modeling and Retrieval (CMMR 2010), Malaga, Spain, pp. 339–354 (June 2010)Google Scholar
  48. 48.
    Stober, S., Nürnberger, A.: MusicGalaxy - an adaptive user-interface for exploratory music retrieval. In: Proc. of the 7th Sound and Music Computing Conference (SMC 2010), Barcelona, Spain, pp. 382–389 (July 2010)Google Scholar
  49. 49.
    Stober, S., Nürnberger, A.: Similarity adaptation in an exploratory retrieval scenario. In: Detyniecki, M., Knees, P., Nürnberger, A., Schedl, M., Stober, S. (eds.) Post- Proceedings of the 8th International Workshop on Adaptive Multimedia Retrieval (AMR 2010), Linz, Austria (2010)Google Scholar
  50. 50.
    Stober, S., Steinbrecher, M., Nürnberger, A.: A survey on the acceptance of listening context logging for mir applications. In: Baumann, S., Burred, J.J., Nürnberger, A., Stober, S. (eds.) Proc. of the 3rd Int. Workshop on Learning the Semantics of Audio Signals (LSAS), Graz, Austria, pp. 45–57 (December 2009)Google Scholar
  51. 51.
    Torrens, M., Hertzog, P., Arcos, J.L.: Visualizing and exploring personal music libraries. In: Proc. of the 5th Int. Conf. on Music Information Retrieval (ISMIR 2004) (2004)Google Scholar
  52. 52.
    Tzanetakis, G.: Marsyas submission to MIREX 2007. In: Proc. of the 8th Int. Conf. on Music Information Retrieval (ISMIR 2007) (2007)Google Scholar
  53. 53.
    Vignoli, F., Pauws, S.: A music retrieval system based on user driven similarity and its evaluation. In: Proc. of the 6th Int. Conf. on Music Information Retrieval (ISMIR 2005), pp. 272–279 (2005)Google Scholar
  54. 54.
    Whitman, B., Ellis, D.: Automatic record reviews. In: Proc. of the 5th Int. Conf. on Music Information Retrieval (ISMIR 2004) (2004)Google Scholar
  55. 55.
    Williams, C.K.I.: On a connection between kernel pca and metric multidimensional scaling. Machine Learning 46(1-3), 11–19 (2002)CrossRefzbMATHGoogle Scholar
  56. 56.
    Wolter, K., Bastuck, C., Gärtner, D.: Adaptive user modeling for content-based music retrieval. In: Detyniecki, M., Leiner, U., Nürnberger, A. (eds.) AMR 2008. LNCS, vol. 5811, pp. 40–52. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sebastian Stober
    • 1
  • Andreas Nürnberger
    • 1
  1. 1.Data & Knowledge Engineering Group, Faculty of Computer ScienceOtto-von-Guericke-UniversityMagdeburgGermany

Personalised recommendations