Advertisement

A Fully Implicit Framework for Sobolev Active Contours and Surfaces

  • Maximilian Baust
  • Nassir Navab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6835)

Abstract

We present a convenient framework for Sobolev active contours and surfaces, which uses an implicit representation on purpose, in contrast to related approaches which use an implicit representation only for the computation of Sobolev gradients. Another difference to related approaches is that we use a Sobolev type inner product, which has a better geometric interpretation, such as the ones proposed for Sobolev active contours. Since the computation of Sobolev gradients for surface evolutions requires the solution of partial differential equations on surfaces, we derive a numerical scheme which allows the user to obtain approximative Sobolev gradients even in linear complexity, if desired. Finally, we perform several experiments to demonstrate that the resulting curve and surface evolutions enjoy the same regularity properties as the original Sobolev active contours and show the whole potential of our method by tracking the left ventricular cavity acquired with 4D MRI.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration pp. 1 –8 (17-22 2007)Google Scholar
  2. 2.
    Bertalmio, M., Cheng, L.T., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. Journal of Computational Physics 174(2), 759–780 (2001)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28Google Scholar
  4. 4.
    Calder, J., Mansouri, A., Yezzi, A.: Image sharpening via sobolev gradient flows. SIAM Journal on Imaging Sciences 3(4), 981–1014 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Charpiat, G., Maurel, P., Pons, J.P., Keriven, R., Faugeras, O.: Generalized gradients: Priors on minimization flows. Int. J. Comput. Vision 73(3), 325–344 (2007)CrossRefGoogle Scholar
  7. 7.
    Chen, S., Charpiat, G., Radke, R.J.: Converting level set gradients to shape gradients (September)Google Scholar
  8. 8.
    Eckstein, I., Pons, J., Tong, Y., Kuo, C., Desbrun, M.: Generalized Surface Flows for Mesh Processing. In: Symposium on Geometry Processing, pp. 183–192 (2007)Google Scholar
  9. 9.
    Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)MATHGoogle Scholar
  10. 10.
    Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM Journal on Imaging Sciences 2(2), 323–343 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gooya, A., Liao, H., Matsumiya, K., Masamune, K., Masutani, Y., Dohi, T.: A variational method for geometric regularization of vascular segmentation in medical images. IEEE Transactions on Image Processing 17(8), 1295–1312 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Neuberger, J.W.: Sobolev gradients and differential equations. Springer, Berlin (1997)MATHGoogle Scholar
  13. 13.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2003)MATHGoogle Scholar
  14. 14.
    Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging,Vision,and Graphics. Springer, Heidelberg (2003)MATHGoogle Scholar
  15. 15.
    Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A pde-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM Journal on Imaging Sciences (2010)Google Scholar
  17. 17.
    Radau, P.: Evaluation of cardiac mr segmentation (2010), http://sourceforge.net/projects/cardiac-mr/files/
  18. 18.
    Sundaramoorthi, G., Yezzi, A., Mennucci, A.: Coarse-to-fine segmentation and tracking using sobolev active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(5), 851–864 (2008)CrossRefGoogle Scholar
  19. 19.
    Sundaramoorthi, G., Mennucci, A., Soatto, S., Yezzi, A.: A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM Journal on Imaging Sciences 4(1), 109–145 (2011)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Sundaramoorthi, G., Yezzi, A.J., Mennucci, A.: Sobolev active contours. International Journal of Computer Vision 73(3), 345–366 (2007)CrossRefGoogle Scholar
  21. 21.
    Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. International Journal of Computer Vision 28(3), 213–221Google Scholar
  22. 22.
    Weickert, J., Romeny, B., Viergever, M.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing 7(3), 398–410 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maximilian Baust
    • 1
  • Nassir Navab
    • 1
  1. 1.Computer Aided Medical Procedures and Augmented Reality (CAMPAR)Technische Universität MünchenGermany

Personalised recommendations