Advertisement

Improving Denoising Algorithms via a Multi-scale Meta-procedure

  • Harold Christopher Burger
  • Stefan Harmeling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6835)

Abstract

Many state-of-the-art denoising algorithms focus on recovering high-frequency details in noisy images. However, images corrupted by large amounts of noise are also degraded in the lower frequencies. Thus properly handling all frequency bands allows us to better denoise in such regimes. To improve existing denoising algorithms we propose a meta-procedure that applies existing denoising algorithms across different scales and combines the resulting images into a single denoised image. With a comprehensive evaluation we show that the performance of many state-of-the-art denoising algorithms can be improved.

Keywords

Additive White Gaussian Noise Noisy Image Image Denoising High Noise Level Multiscale Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, S., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing 9(9), 1532–1546 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing 15(12), 3736–3745 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Estrada, F., Fleet, D., Jepson, A.: Stochastic image denoising. In: Proceedings of the British Machine Vision Conference, BMVC (2009)Google Scholar
  5. 5.
    Jain, V., Seung, H.: Natural image denoising with convolutional networks. Advances in Neural Information Processing Systems (NIPS) 21, 769–776 (2009)Google Scholar
  6. 6.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: IEEE 12th International Conference on Computer Vision (ICCV). pp. 2272–2279 (2009)Google Scholar
  7. 7.
    Mairal, J., Elad, M., Sapiro, G., et al.: Sparse representation for color image restoration. IEEE Transactions on Image Processing 17(1), 53 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pizurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising. IEEE Transactions on Image Processing 11(5), 545–557 (2002)CrossRefGoogle Scholar
  9. 9.
    Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image processing 12(11), 1338–1351 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rajashekar, U., Simoncelli, E.: Multiscale denoising of photographic images. In: The Essential Guide To Image Processing, pp. 241–261. Academic Press, London (2009)CrossRefGoogle Scholar
  11. 11.
    Roth, S., Black, M.: Fields of experts. International Journal of Computer Vision 82(2), 205–229 (2009)CrossRefGoogle Scholar
  12. 12.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1-4), 259–268 (1992)zbMATHCrossRefGoogle Scholar
  13. 13.
    Simoncelli, E., Adelson, E.: Noise removal via Bayesian wavelet coring. In: Proceedings of International Conference on Image Processing (ICIP), pp. 379–382 (1996)Google Scholar
  14. 14.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth International Conference on Computer Vision (ICCV), pp. 839–846 (1998)Google Scholar
  15. 15.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  16. 16.
    Weickert, J.: Anisotropic diffusion in image processing. ECMI Series. Teubner-Verlag, Stuttgart (1998)zbMATHGoogle Scholar
  17. 17.
    Weiss, Y., Freeman, W.: What makes a good model of natural images? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Harold Christopher Burger
    • 1
  • Stefan Harmeling
    • 1
  1. 1.Max Planck Institute for Intelligent SystemsTübingenGermany

Personalised recommendations