Putting MAP Back on the Map

  • Patrick Pletscher
  • Sebastian Nowozin
  • Pushmeet Kohli
  • Carsten Rother
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6835)

Abstract

Conditional Random Fields (CRFs) are popular models in computer vision for solving labeling problems such as image denoising. This paper tackles the rarely addressed but important problem of learning the full form of the potential functions of pairwise CRFs. We examine two popular learning techniques, maximum likelihood estimation and maximum margin training. The main focus of the paper is on models such as pairwise CRFs, that are simplistic (misspecified) and do not fit the data well. We empirically demonstrate that for misspecified models maximum-margin training with MAP prediction is superior to maximum likelihood estimation with any other prediction method. Additionally we examine the common belief that MLE is better at producing predictions matching image statistics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Patrick Pletscher
    • 1
  • Sebastian Nowozin
    • 2
  • Pushmeet Kohli
    • 2
  • Carsten Rother
    • 2
  1. 1.ETH ZurichSwitzerland
  2. 2.Microsoft Research CambridgeUK

Personalised recommendations