Prediction of Cerebral Aneurysm Rupture Using Hemodynamic, Morphologic and Clinical Features: A Data Mining Approach

  • Jesus Bisbal
  • Gerhard Engelbrecht
  • Mari-Cruz Villa-Uriol
  • Alejandro F. Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6861)

Abstract

Cerebral aneurysms pose a major clinical threat and the current practice upon diagnosis is a complex, lengthy, and costly, multi-criteria analysis, which to date is not fully understood. This paper reports the development of several classifiers predicting whether a given clinical case is likely to rupture taking into account available information of the patient and characteristics of the aneurysm.

The dataset used included 157 cases, with 294 features each. The broad range of features include basic demographics and clinical information, morphological characteristics computed from the patient’s medical images, as well as results gained from personalised blood flow simulations.

In this premiere attempt the wealth of aneurysm-related information gained from multiple heterogeneous sources and complex simulation processes is used to systematically apply different data-mining algorithms and assess their predictive accuracy in this domain. The promising results show up to 95% classification accuracy. Moreover, the analysis also enables to confirm or reject risk factors commonly accepted or suspected in the domain.

Keywords

Data mining complex data classifiers association rules feature discretization feature selection decision support aneurysm rupture biomedicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonie, M., Zaïane, O., Coman, A.: Application of data mining techniques for medical image classification. In: Proceedings of the Second International Workshop Multimedia Data Mining, with ACM SIGKDD, pp. 94–101 (2001)Google Scholar
  2. 2.
    Benkner, S., Arbona, A., Berti, G., Chiarini, A., Dunlop, R., Engelbrecht, G., Frangi, A.F., et al.: @neurIST: Infrastructure for advanced disease management through integration of heterogeneous data, computing, and complex processing services. IEEE Transactions on Information Technology in Boimedicine 14, 126–131 (2010)Google Scholar
  3. 3.
    Bennett, K.P., Campbell, C.: Support vector machines: Hype or hallelujah? SIGKDD Explorations Newsletter 2, 1–13 (2000)CrossRefGoogle Scholar
  4. 4.
    Berthold, M.R.: Mixed fuzzy rule formation. International Journal of Approximate Reasoning 32(2-3), 67–84 (2003)CrossRefMATHGoogle Scholar
  5. 5.
    Berthold, M.R., Diamond, J.: Constructive training of probabilistic neural networks. Neurocomputing 19(1-3), 167–183 (1998)CrossRefGoogle Scholar
  6. 6.
    Cebral, J., Mut, F., Weir, J., Putman, C.: Association of hemodynamic characteristics and cerebral aneurysm rupture. American Journal of Neuroradiology 32, 264–270 (2011)CrossRefGoogle Scholar
  7. 7.
    Chien, A., Castro, M., Tateshima, S., Sayre, J., Cebral, J., Vinuela, F.: Quantitative hemodynamic analysis of brain aneurysms at different locations. American Journal of Neuroradiology 30, 1507–1512 (2009)CrossRefGoogle Scholar
  8. 8.
    Dunlop, R., Arbona, A., Rajasekaran, H., Lo Iacono, L., Fingberg, J., Summers, P., Benkner, S., Engelbrecht, G., Chiarini, A., Friedrich, C.M., Moore, B., Bijlenga, P., Iavindrasana, J., Hose, R.D., Frangi, A.F.: @neurIST - chronic disease management through integration of heterogeneous data and computer-interpretable guideline services. Stud. Health Technol. Inform. 138, 173–177 (2008)Google Scholar
  9. 9.
    Frangi, A.F., Hose, R., Ruefenacht, D.: The @neurIST project: Towards understanding cerebral aneurysms (2007)Google Scholar
  10. 10.
    Friedrich, C.M., Dach, H., Gattermayer, T., Engelbrecht, G., Benkner, S., Hofmann-Apitius, M.: @neurIST - chronic disease management through integration of heterogeneous data and computer-interpretable guideline services. Stud. Health Technol. Inform. 138, 165–172 (2008)Google Scholar
  11. 11.
    Iavindrasana, J., Depeursinge, A., Ruch, P., Spahni, S., Geissbuhler, A., Müller, H.: Design of a decentralized reusable research database architecture to support data acquisition in large research projects. Stud. Health Technol. Inform. 129, 325–329 (2007)Google Scholar
  12. 12.
    Johnston, S., Wilson, C.B., Halbach, V., Higashida, R., Dowd, C., McDermott, M., Applebury, C., Farley, T., Gress, D.: Endovascular and surgical treatment of unruptured cerebral aneurysms: comparison of risks. Annals of Neurology 48, 11–19 (2000)CrossRefGoogle Scholar
  13. 13.
    Kurkure, U., Chittajallu, D., Brunner, G., Le, Y., Kakadiaris, I.: A supervised classification-based method for coronary calcium detection in non-contrast CT. International Journal of Cardiovascular Imaging 26, 9817–9828 (2010)CrossRefGoogle Scholar
  14. 14.
    Lee, H.G., Nohand, K.Y., Ryu, K.H.: A data mining approach for coronary heart disease prediction using HRV features and carotid arterial wall thickness. In: Proceedings of the 2008 International Conference on BioMedical Engineering and Informatics, pp. 200–206. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  15. 15.
    Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley, Chichester (2002)MATHGoogle Scholar
  16. 16.
    Parthasarathy, S., Aggarwal, C.: On the use of conceptual reconstruction for mining massively incomplete data sets. IEEE Transactions on Knowledge and Data Engineering 15(6), 1512–1521 (2003)CrossRefGoogle Scholar
  17. 17.
    Pozo, J.M., Villa-Uriol, M.C., Frangi, A.F.: Efficient 3D geometric and Zernike moments computation from unstructured surface meshes. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 471–484 (2011)CrossRefGoogle Scholar
  18. 18.
    Ribeiro, M., Balan, A., Felipe, J., Traina, A., Traina, C.: Mining Complex Data, Studies in Computational Intelligence. In: Mining Statistical Association Rules to Select the Most Relevant Medical Image Features, vol. 165, pp. 113–131. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Ribeiro, M., Traina, A.M., Traina, C., Rosa, N., Marques, P.: How to improve medical image diagnosis through association rules: The IDEA method. In: Proceedings of the 21st IEEE International Symposium on Computer-Based Medical Systems, pp. 266–271. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  20. 20.
    Roos, Y.B., Dijkgraaf, M.G., Albrecht, K.W., Beenen, L.F., Groen, R.J., de Haan, R.J., Vermeulen, M.: Direct costs of modern treatment of aneurysmal subarachnoid hemorrhage in the first year after diagnosis. Stroke 33, 1595–1599 (2002)CrossRefGoogle Scholar
  21. 21.
    Tan, X., Han, H.P.Q., Ni, J.: Domain knowledge-driven association pattern mining algorithm on medical images. In: Proceedings of the 2009 Fourth International Conference on Internet Computing for Science and Engineering, pp. 30–35 (2009)Google Scholar
  22. 22.
    Tsai, C., Lee, C., Yang, W.: A discretization algorithm based on class-attribute contingency coefficient. Information Sciences 731, 714–731 (2008)CrossRefGoogle Scholar
  23. 23.
    Valencia, C., Villa-Uriol, M.C., Pozo, J.M., Frangi, A.F.: Morphological descriptors as rupture indicators in middle cerebral artery aneurysms. In: EMBC, Buenos Aires, Argentina, pp. 6046–6049 (September 2010)Google Scholar
  24. 24.
    Villa-Uriol, M.C., Berti, G., Hose, D.R., Marzo, A., Chiarini, A., Penrose, J., Pozo, J., Schmidt, J.G., Singh, P., Lycett, R., Larrabide, I., Frangi, A.F.: @neurIST complex information processing toolchain for the integrated management of cerebral aneurysms. Interface Focus (2011)Google Scholar
  25. 25.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2000)Google Scholar
  26. 26.
    Xiang, J., Natarajan, S.K., Tremmel, M., Ma, D., Mocco, J., Hopkins, L.N., Siddiqui, A.H., Levy, E.I., Meng, H.: Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42, 144–152 (2011)CrossRefGoogle Scholar
  27. 27.
    Yin, X., Han, J.: CPAR: Classification based on predictive association rules. In: Proceedings SIAM International Conference on Data Mining, pp. 331–335 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jesus Bisbal
    • 1
    • 2
  • Gerhard Engelbrecht
    • 1
    • 2
  • Mari-Cruz Villa-Uriol
    • 1
    • 2
  • Alejandro F. Frangi
    • 1
    • 2
    • 3
  1. 1.Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB)Universitat Pompeu Fabra (UPF)BarcelonaSpain
  2. 2.Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)Spain
  3. 3.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations