A Query Language for Analyzing Business Processes Execution

  • Seyed-Mehdi-Reza Beheshti
  • Boualem Benatallah
  • Hamid Reza Motahari-Nezhad
  • Sherif Sakr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6896)

Abstract

The execution of a business process (BP) in today’s enterprises may involve a workflow and multiple IT systems and services. Often no complete, up-to-date documentation of the model or correlation information of process events exist. Understanding the execution of a BP in terms of its scope and details is challenging specially as it is subjective: depends on the perspective of the person looking at BP execution. We present a framework, simple abstractions and a language for the explorative querying and understanding of BP execution from various user perspectives. We propose a query language for analyzing event logs of process-related systems based on the two concepts of folders and paths, which enable an analyst to group related events in the logs or find paths among events. Folders and paths can be stored to be used in follow-on analysis. We have implemented the proposed techniques and the language, FPSPARQL, by extending SPARQL graph query language. We present the evaluation results on the performance and the quality of the results using a number of process event logs.

Keywords

Business Processes Query Processing Event Correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aalst, W.M.P.V.D.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Aalst, W.M.P.V.D., Dongen, B.F.V., Günther, C.W., Rozinat, A., Verbeek, E., Weijters, T.: Prom: The process mining toolkit. In: BPM (2009)Google Scholar
  3. 3.
    Aalst, W.M.P.V.D., Dongen, B.F.V., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data Knowl. Eng. 47, 237–267 (2003)CrossRefGoogle Scholar
  4. 4.
    Aggarwal, C.C., Wang, H.: Managing and Mining Graph Data. Springer Publishing Company, Incorporated, Heidelberg (2010)CrossRefMATHGoogle Scholar
  5. 5.
    Alkhateeb, F., Baget, J., Euzenat, J.: Extending sparql with regular expression patterns. J. Web Sem. 7(2), 57–73 (2009)CrossRefGoogle Scholar
  6. 6.
    Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40, 1:1–1:39 (2008)CrossRefGoogle Scholar
  7. 7.
    Awad, A.: BPMN-Q: A Language to Query Business Processes. In: EMISA (2007)Google Scholar
  8. 8.
    Barros, A.P., Decker, G., Dumas, M., Weber, F.: Correlation patterns in service-oriented architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 245–259. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with BP-QL. Inf. Syst. 33(6) (2008)Google Scholar
  10. 10.
    Beeri, C., Eyal, A., Milo, T., Pilberg, A.: Monitoring Business Processes with Queries. In: VLDB (2007)Google Scholar
  11. 11.
    Begel, A., Khoo, Y.P., Zimmermann, T.: Codebook: discovering and exploiting relationships in software repositories. In: ICSE 2010, pp. 125–134 (2010)Google Scholar
  12. 12.
    Beheshti, S.M.R., Sakr, S., Benatallah, B., Motahari-Nezhad, H.R.: Extending SPARQL to support entity grouping and path queries. Technical report, unsw-cse-tr-1019, University of New South Wales (2010)Google Scholar
  13. 13.
    Chebotko, A., Lu, S., Fei, X., Fotouhi, F.: Rdfprov: A relational rdf store for querying and managing scientific workflow provenance. Data Knowl. Eng. 69(8), 836–865 (2010)CrossRefGoogle Scholar
  14. 14.
    Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving sparql-to-sql translation. Data Knowl. Eng. 68(10), 973–1000 (2009)CrossRefGoogle Scholar
  15. 15.
    Cyganiak, R.: A relational algebra for SPARQL. Hpl-2005-170, HP-Labs (2005)Google Scholar
  16. 16.
    Dries, A., Nijssen, S., De Raedt, L.: A query language for analyzing networks. In: CIKM 2009, pp. 485–494. ACM, NY (2009)Google Scholar
  17. 17.
    Eshuis, R., Grefen, P.: Structural Matching of BPEL. In: ECOWS (2007)Google Scholar
  18. 18.
    Francescomarino, C., Tonella, P.: Crosscutting Concern Documentation by Visual Query of Business Processes. In: BPM Workshops (2008)Google Scholar
  19. 19.
    Holl, D.A., Braun, U., Maclean, D., Muniswamy-reddy, K.: Choosing a data model and query language for provenance. In: IPAW 2008 (2008)Google Scholar
  20. 20.
    Iordanov, B.: HyperGraphDB: A generalized graph database. In: Shen, H.T., Pei, J., Özsu, M.T., Zou, L., Lu, J., Ling, T.-W., Yu, G., Zhuang, Y., Shao, J. (eds.) WAIM 2010. LNCS, vol. 6185, pp. 25–36. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Momotko, M., Subieta, K.: Process Query Language: A Way to Make Workflow Processes More Flexible. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 306–321. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Moreau, L., Freire, J., Futrelle, J., Mcgrath, R.E., Myers, J., Paulson, P.: The open provenance model: An overview. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 323–326. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Motahari-Nezhad, H.R., Benatallah, B., Saint-Paul, R., Casati, F., Andritsos, P.: Process spaceship: discovering and exploring process views from event logs in data spaces. PVLDB 1(2), 1412–1415 (2008)Google Scholar
  24. 24.
    Motahari-Nezhad, H.R., Saint-Paul, R., Benatallah, B., Casati, F.: Deriving protocol models from imperfect service conversation logs. IEEE Trans. on Knowl. and Data Eng. 20, 1683–1698 (2008)CrossRefGoogle Scholar
  25. 25.
    Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation for process discovery from web service interaction logs. VLDB J 20(3), 417–444 (2011)CrossRefGoogle Scholar
  26. 26.
    Ooi, B.C., Yu, B., Li, G.: One table stores all: Enabling painless free-and-easy data publishing and sharing. In: CIDR 2007, pp. 142–153 (2007)Google Scholar
  27. 27.
    Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and Monitoring Web Service Composition. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS (LNAI), vol. 3192, pp. 106–115. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Prud’hommeaux, E., Seaborne, A.: Sparql query language for rdf (working draft). Technical report, W3C (March 2007)Google Scholar
  29. 29.
    Rahm, E., Hai Do, H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)Google Scholar
  30. 30.
    Sakr, S., Al-Naymat, G.: Relational processing of rdf queries: a survey. SIGMOD Rec 38(4), 23–28 (2009)CrossRefGoogle Scholar
  31. 31.
    Sakr, S., Awad, A.: A Framework for Querying Graph-Based Business Process Models. In: WWW (2010)Google Scholar
  32. 32.
    Satish, A., Jain, R., Gupta, A.: Tolkien: an event based storytelling system. In: Proc. VLDB Endow., vol. 2, pp. 1630–1633 (August 2009)Google Scholar
  33. 33.
    Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in search engines. In: WWW 2008, USA, pp. 387–396 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Seyed-Mehdi-Reza Beheshti
    • 1
  • Boualem Benatallah
    • 1
  • Hamid Reza Motahari-Nezhad
    • 2
  • Sherif Sakr
    • 1
  1. 1.University of New South WalesSydneyAustralia
  2. 2.HP LabsPalo AltoUSA

Personalised recommendations