Glycosaminoglycan and Chemokine/Growth Factor Interactions

Part of the Handbook of Experimental Pharmacology book series (HEP, volume 207)


Heparin and glycosaminoglycans (GAGs) related structurally to heparin, notably heparan sulphate, bind to most, if not all, chemokines and many growth factors. The chemokine and growth factor interactions with GAGs localise the peptide mediators to specific sites in tissues and influence their stability and function. This chapter discusses the nature of these interactions and the effect on the function of a number of chemokines (PF-4, interleukin-8, RANTES and SDF-1) and growth factors (FGF, HGF, VEGF) in normal physiology and the disease setting. Novel therapeutic interventions that target chemokine and growth factor interactions with GAGs are also discussed.


Chemokine Glycosaminoglycan Growth factor Therapeutic intervention 


  1. Alexopoulou AN, Multhaupt HAB, Couchman JR (2007) Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol 39:505–528PubMedCrossRefGoogle Scholar
  2. Bedke J, Nelson PJ, Kiss E et al (2010) A novel CXCL8 protein-based antagonist in acute experimental renal allograft damage. Mol Immunol 47(5):1047–1057PubMedCrossRefGoogle Scholar
  3. Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253PubMedCrossRefGoogle Scholar
  4. Belpeiro JA, Keane MP, Arenberg DA et al (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8Google Scholar
  5. Birchmeier C, Birchmeier W, Gheradi E, van de Woude GF (2003) MET, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925PubMedCrossRefGoogle Scholar
  6. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037PubMedCrossRefGoogle Scholar
  7. Brandner B, Rek A, Diedrichs-Mohring M et al (2009) Engineering the glycosaminoglycan-binding affinity, kinetics and oligomerization behaviour of RANTES: a tool for generating chemokine-based glycosaminoglycan antagonists. Prot Eng Des Select 22:367–373CrossRefGoogle Scholar
  8. Brandt E, Ludwig A, Petersen F, Flad H-D (2000) Platelet-derived CXC chemokines: old players in new games. Immunol Rev 177:204–216PubMedCrossRefGoogle Scholar
  9. Capila I, Linhardt RJ (2002) Heparin-protein interaction. Angew Chem Int Ed Engl 41:390–412CrossRefGoogle Scholar
  10. Catlow KR, Deakin JA, Wei Z et al (2008) Interactions of hepatocyte growth factor/scatter factor with various glycosaminoglycans reveal an important interplay between the presence of iduronate and sulphate density. J Biol Chem 283:5235–5248PubMedCrossRefGoogle Scholar
  11. Charnaux N, Brule S, Hamon M et al (2005) Syndecan-4 is a signalling molecule for stromal cell-derived factor-1 (SDF-1)/CXCL12. FEBS J 272:1937–1951PubMedCrossRefGoogle Scholar
  12. Charni F, Friand V, Haddad O et al (2009) Syndecan-1 and syndecan-4 are involved in RANTES/CCL5-induced migration and invasion of human hepatoma cells. Biochim Biophys Acta 1790:1314–1326PubMedCrossRefGoogle Scholar
  13. Colditz IG, Schneider MA, Pruenster M, Rot A (2007) Chemokines at large: in-vivo mechanisms of their transport, presentation and clearance. Thromb Haemost 97:688–693PubMedGoogle Scholar
  14. De Larco JE, Wuertz BRK, Furcht LT (2004) The potential role of neutrophils in promoting the metastatic phenotype of tumours releasing interleukin-8. Clin Cancer Res 10:4895–4900PubMedCrossRefGoogle Scholar
  15. de Paz JL, Moseman EA, Noti C et al (2007) Profiling heparan-chemokine interactions using synthetic tools. ACS Chem Biol 2:735–744PubMedCrossRefGoogle Scholar
  16. Ferro V, Dredge K, Liu L et al (2007) PI-88 and novel heparan sulphate mimetics inhibit angiogenesis. Semin Thromb Hemost 33:557–568PubMedCrossRefGoogle Scholar
  17. Freeman C, Liu L, Banwell MG et al (2005) Use of sulphated linked cyclitols as heparan sulphate mimetics to probe the heparin/heparan sulphate binding specificity of proteins. J Biol Chem 280:8842–8849PubMedCrossRefGoogle Scholar
  18. Frevert CW, Kinsella MG, Vathanaprida C et al (2003) Binding of interleukin-8 to heparan sulfate and chondroitin sulfate in lung tissue. Am J Respir Cell Mol Biol 28:464–472PubMedCrossRefGoogle Scholar
  19. Gallagher JT (2006) Multiprotein signalling complexes: regional assembly on heparan sulphate. Biochem Soc Trans 34:438–441PubMedCrossRefGoogle Scholar
  20. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72:455–482PubMedCrossRefGoogle Scholar
  21. Gleissner CA, von Hundelhausen P, Ley K (2008) Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol 28:1920–1927PubMedCrossRefGoogle Scholar
  22. Goodger SJ, Robinson CJ, Murphy KJ et al (2008) Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J Biol Chem 283:13001–13008PubMedCrossRefGoogle Scholar
  23. Greinacher A (2009) Heparin-induced thrombocytopenia. J Thromb Haemost 7:9–12PubMedCrossRefGoogle Scholar
  24. Halden Y, Rek A, Atzenhofer W et al (2004) Interleukin-8 binds to syndecan-2 on human endothelial cells. Biochem J 377:533–538PubMedCrossRefGoogle Scholar
  25. Handel TM, Johnson Z, Crown SE et al (2005) Regulation of protein function by glycosaminoglycans – as exmplified by chemokines. Annu Rev Biochem 74:385–410PubMedCrossRefGoogle Scholar
  26. Harmer NJ (2006) Insights into the role of heparan sulphate in fibroblast growth factor signalling. Biochem Soc Trans 34:442–445PubMedCrossRefGoogle Scholar
  27. Hoogewerf AJ, Kushert GSV, Proudfoot AEI et al (1997) Glycosaminoglycans mediate cell surface oligomerisation of chemokines. Biochemistry 36:13570–13578PubMedCrossRefGoogle Scholar
  28. Johnson Z, Kosco-Vilbois MH, Herren S et al (2004) Interference with heparin binding and oligomerisation creates a novel anti-inflammatory strategy targeting the chemokine system. J Immunol 173:5776–5785PubMedGoogle Scholar
  29. Joung YK, Bae JW, Park KD (2008) Controlled release of heparin-binding growth factors using heparin-containing particulate systems for tissue regeneration. Expert Opin Drug Deliv 5:1173–1184PubMedCrossRefGoogle Scholar
  30. Kato M, Wang H, Kainulainen V et al (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4:691–697PubMedCrossRefGoogle Scholar
  31. Khachigian LM, Parish CR (2004) Phosphomannopentaose sulphate (PI-88): heparan sulphate mimetic with clinical potential in multiple vascular pathologies. Cardiovasc Drug Rev 22:1–6PubMedCrossRefGoogle Scholar
  32. Kreuger J, Spillman D, Li J-P, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327PubMedCrossRefGoogle Scholar
  33. Kuschert GS, Hoogewerf AJ, Proudfoot AE et al (1998) Identification of a glycosaminoglycan binding surface on human interleukin-8. Biochemistry 37:11193–11201PubMedCrossRefGoogle Scholar
  34. Kuschert GSV, Coulin F, Power CA et al (1999) Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 38:12959–12968PubMedCrossRefGoogle Scholar
  35. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689PubMedCrossRefGoogle Scholar
  36. Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111:635–646PubMedCrossRefGoogle Scholar
  37. Lortat-Jacob H (2009) The molecular basis and functional implications of chemokine interactions with heparan sulphate. Curr Opin Struct Biol 19:543–548PubMedCrossRefGoogle Scholar
  38. Lortat-Jacob H, Grosdidier A, Imberty A (2002) Structural diversity of heparan sulphate binding domains in chemokines. Proc Natl Acad Sci USA 99:1229–1234PubMedCrossRefGoogle Scholar
  39. Malavaki C, Mizumoto N, Karamanos N, Sugahara K (2008) Recent advances in the structural study of functional chondroitin and dermatan sulphate in health and disease. Conn Tiss Res 49:133–139CrossRefGoogle Scholar
  40. Marshall LJ, Ramdin LS, Brooks T et al (2003) Plasminogen activator inhibitor-1 supports IL-8-mediated neutrophil transendothelial migration by inhibition of the constitutive shedding of endothelial IL-8/heparan sulfate/syndecan-1 complexes. J Immunol 171:2057–65PubMedGoogle Scholar
  41. Martin L, Blanpain C, Garnier P et al (2001) Structural and functional analysis of the RANTES-glycosaminoglycans interactions. Biochemistry 40:6303–6318PubMedCrossRefGoogle Scholar
  42. Masouleh BK, Ten Dam GB, Wild MK et al (2009) Role of heparan sulphate proteoglycan syndecan-1 (CD138) in delayed type hypersensitivity. J Immunol 182:4985–4993CrossRefGoogle Scholar
  43. Mikhailov D, Young HC, Linhardt RJ, Mayo KH (1999) Heparin dodecasaccaride binding to platelet factor-4 and growth-related protein-alpha. Induction of a partially folded state and implications for heparin-induced thrombocytopenia. J Biol Chem 274:25317–25329PubMedCrossRefGoogle Scholar
  44. Murphy JW, Cho Y, Sachpatzidis A et al (2007) Structural and functional basis of CXCL12 (stromal cell-derived factor-1 alpha) binding to heparin. J Biol Chem 282:10018–10027PubMedCrossRefGoogle Scholar
  45. Nickel W (2007) Unconventional secretion: an extracellular trap for export of fibroblast growth factor 2. J Cell Sci 120:2295–2299PubMedCrossRefGoogle Scholar
  46. Parish CR (2006) The role of heparan sulphate in inflammation. Nat Rev Immunol 6:633–643PubMedCrossRefGoogle Scholar
  47. Patterson AM, Gardner L, Shaw J et al (2005) Induction of a CXCL8 binding site on endothelial syndecan-3 in rheumatoid synovium. Arthritis Rheum 52:2331–2342PubMedCrossRefGoogle Scholar
  48. Poncz M (2005) Mechanistic basis of heparin-induced thrombocytopenia. Semin Thorac Cardiovasc Surg 17:73–79PubMedCrossRefGoogle Scholar
  49. Proudfoot AE, Fritchley S, Borlat F et al (2001) The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J Biol Chem 276:10620–10626PubMedCrossRefGoogle Scholar
  50. Proudfoot AE, Handel TM, Johnson Z et al (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA 100:1885–1890PubMedCrossRefGoogle Scholar
  51. Proudfoot AEI, de Souza ALS, Muzio V (2008) The use of chemokine antagonists in EAE models. J Neuroimmunol 198:27–30PubMedCrossRefGoogle Scholar
  52. Rajarathnam K, Sykes BD, Kay CM et al (1994) Neutrophil activation by monomeric interleukin-8. Science 264:90–92PubMedCrossRefGoogle Scholar
  53. Ramdin L, Perks B, Sheron N, Shute JK (1997) Regulation of interleukin-8 binding and function by heparin and alpha2-macroglobulin. Clin Exp Allergy 28:616–624CrossRefGoogle Scholar
  54. Rek A, Brandner B, Geretti E, Kungl AJ (2009a) A biophysical insight into the RANTES-glycoaminoglycan interaction. Biochim Biophys Acta 1794:577–582PubMedGoogle Scholar
  55. Rek A, Krenn E, Kungl AJ (2009b) Therapeutically targeting protein-glycan interactions. Br J Pharmacol 157:686–694PubMedCrossRefGoogle Scholar
  56. Robinson CJ, Mulloy B, Gallagher JT, Stringer SE (2006) VEGF165-binding sites within heparan sulphate encompass two highly sulphated domains and can be liberated by K5 lyase. J Biol Chem 281:1731–1740PubMedCrossRefGoogle Scholar
  57. Rot A (1992) Endothelial cell binding of NAP-1/IL-8: role in neutrophil emigration. Immunol Today 13:291–294PubMedCrossRefGoogle Scholar
  58. Rot A, Hub E, Middleton J et al (1996) Some aspects of IL-8 pathophysiology III: chemokine interaction with endothelial cells. J Lukoc Biol 59:39–44Google Scholar
  59. Rueda P, Balabanian K, Lagane B et al (2008) The CXCL12γ chemokine displays unprecedented structural ad functional properties that make it a paradigm of chemoattractant proteins. PLoS One 3:e2543PubMedCrossRefGoogle Scholar
  60. Ruhrberg C (2003) Growing and shaping the vascular tree: multiple roles for VEGF. Bioessays 25:1052–1060PubMedCrossRefGoogle Scholar
  61. Schuksz M, Fuster MM, Brown JR et al (2008) Surfen, a small molecule antagonist of heparan sulphate. Proc Natl Acad Sci USA 105:13075–13080PubMedCrossRefGoogle Scholar
  62. Segerer S, Johnson Z, Rek A et al (2009) The basic residue cluster 55KKWVR59 in CCL5 is required for in vivo biologic function. Mol Immunol 46:2533–2538PubMedCrossRefGoogle Scholar
  63. Shamri R, Grabovsky V, Gauguet JM et al (2005) Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 6:497–506PubMedCrossRefGoogle Scholar
  64. Solic N, Wilson J, Wilson SJ, Shute JK (2005) Endothelial activation and increased heparan sulfate expression in cystic fibrosis. Am J Respir Crit Care Med 72:892–898CrossRefGoogle Scholar
  65. Spillman D, Witt D, Lindahl U (1998) Defining the interleukin-8 binding domain of heparan sulphate. J Biol Chem 273:15487–15493CrossRefGoogle Scholar
  66. Stringer SE, Gallagher JT (1997) Specific binding of the chemokine platelet factor 4 to heparan sulphate. J Biol Chem 272:20508–20514PubMedCrossRefGoogle Scholar
  67. Sutton A, Friand V, Papy-Garcia D et al (2007) Glycosaminoglycans and their synthetic mimetics inhibit RANTES-induced migration and invasion of human hepatoma cells. Mol Cancer Ther 6:2948–2958PubMedCrossRefGoogle Scholar
  68. Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11:51–59PubMedGoogle Scholar
  69. Wagner L, Yang OO, Garcia-Zepeda EA et al (1998) Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 391(6670):908–911PubMedCrossRefGoogle Scholar
  70. Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparan sulphate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6:902–910PubMedCrossRefGoogle Scholar
  71. Waugh DJJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741PubMedCrossRefGoogle Scholar
  72. Xiao Z, Visentin GP, Dayananda K, Neelamegham S (2008) Immune complexes formed following the binding of anti-platelet factor 4 (CXCL4) antibodies to CXCL4 stimulate human neutrophil activation and cell adhesion. Blood 112:1091–1100PubMedCrossRefGoogle Scholar
  73. Xu J, Park PW, Kheradmand F, Corry DB (2005) Endogenous attenuation of allergic lung inflammation by syndecan-1. J Immunol 174:5758–5765PubMedGoogle Scholar
  74. Yamaguchi K, Tamaki H, Fukui S (2006) Detection of oligosaccharide ligands for hepatocyte growth factor/scatter factor (HGF/SF), keratinocyte growth factor (KGF/FGF-7), RANTES and heparin cofactor II by neoglycolipid microarrays of glycosaminoglycan-derived oligosaccharide fragments. Glycoconj J 23:513–523PubMedCrossRefGoogle Scholar
  75. Yoshimura T, Matsushima K, Tanaka S et al (1987) Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host-defense cytokines. Proc Natl Acad Sci USA 84:9233–9237PubMedCrossRefGoogle Scholar
  76. Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7:243PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Biomedical and Biomolecular SciencesUniversity of PortsmouthPortsmouthUK

Personalised recommendations