Heparin - A Century of Progress pp 281-305

Part of the Handbook of Experimental Pharmacology book series (HEP, volume 207)

Non-anticoagulant Effects of Heparin: An Overview


Heparin has long been known to possess biological effects that are unrelated to its anticoagulant activity. In particular, much emphasis has been placed upon heparin, or novel agents based upon the heparin template, as potential anti-inflammatory agents. Moreover, heparin has been reported to possess clinical benefit in humans, including in chronic inflammatory diseases and cancer, that are over and above the expected effects on blood coagulation and which in many cases are entirely separable from this role. This chapter aims to provide an overview of the non-anticoagulant effects that have been ascribed to heparin, from those involving the binding and inhibition of specific mediators involved in the inflammatory process to effects in whole system models of disease, with reference to the effects of heparin that have been reported to date in human diseases.


Cancer Inflammation Inflammatory disease Non-anticoagulant effects 


  1. Abrink M, Grujic M, Pejler G (2004) Serglycin is essential for maturation of mast cell secretory granule. J Biol Chem 279:40897–40905PubMedCrossRefGoogle Scholar
  2. Ahmed T, Abraham WM, D’Brot J (1992) Effects of inhaled heparin on immunologic and nonimmunologic bronchoconstrictor responses in sheep. Am Rev Respir Dis 145:566–570PubMedGoogle Scholar
  3. Ahmed T, Garrigo J, Danta I (1993) Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N Engl J Med 329:90–95PubMedCrossRefGoogle Scholar
  4. Ahmed T, Syriste T, Mendelssohn R, Sorace D, Mansour E, Lansing M, Abraham WM, Robinson MJ (1994) Heparin prevents antigen-induced airway hyperresponsiveness: interference with IP3-mediated mast cell degranulation? J Appl Physiol 76:893–901PubMedCrossRefGoogle Scholar
  5. Ahmed T, Campo C, Abraham MK, Molinari IF, Abraham WM, Ashkin D, Syriste T, Andersson LO, Svahn CM (1997) Inhibition of antigen-induced acute bronchoconstriction, airway hyperresponsiveness, and mast cell degranulation by a nonanticoagulant heparin – comparison with a low molecular weight heparin. Am J Respir Crit Care Med 155:1848–1855PubMedGoogle Scholar
  6. Aki EA, van Doormaal FF, Barba M, Kamath G, Kim SY, Kuipers S, Middeldorp S, Yosuico V, Dickinson HO, Schünemann HJ (2007) Parenteral anticoagulation for prolonging survival in patients with cancer who have no other indication for anticoagulation. Cochrane Database Syst Rev 3:CD006652Google Scholar
  7. Alonso DF, Bertolesi GE, Farias EF, Eijan AM, Joffe EBD, De Cidre LL (1996) Antimetastatic effects associated with anticoagulant properties of heparin and chemically modified heparin species in a mouse mammary tumor model. Oncol Rep 3:219–222PubMedGoogle Scholar
  8. Amirkhosravi A, Meyer T, Amaya M, Davila M, Mousa SA, Robson T, Francis JL (2007) The role of tissue factor pathway inhibitor in tumor growth and metastasis. Semin Thromb Hemost 33:643–652PubMedCrossRefGoogle Scholar
  9. Antczak M, Kuna P (1995) Heparin inhibits allergen induced airway response in asthmatics. Results of a double blind placebo-controlled, crossover study. J Allergy Clin Immunol 95:386 (Abstract)Google Scholar
  10. Baer CL, Bennett WM, Folwick DA, Erickson RS (1996) Effectiveness of a jet injection system in administering morphine and heparin to healthy adults. Am J Crit Care 5:42–48PubMedGoogle Scholar
  11. Bai S, Ahsan F (2009) Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm Res 26:539–548PubMedCrossRefGoogle Scholar
  12. Bai S, Ahsan F (2010) Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism. J Pharm Sci 99:4554–4564PubMedCrossRefGoogle Scholar
  13. Bai S, Gupta V, Ahsan F (2010) Inhalable lactose-based dry powder formulations of low molecular weight heparin. J Aerosol Med Pulm Drug Deliv 23:97–104PubMedCrossRefGoogle Scholar
  14. Bar-Ner M, Eldor A, Wasserman L, Matzner Y, Cohen IR, Fuks Z, Vlodavsky I (1987) Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species. Blood 70:551–557PubMedGoogle Scholar
  15. Basche M, Gustafson DL, Holden SN, O'Bryant CL, Gore L, Witta S, Schultz MK, Morrow M, Levin A, Creese BR, Kangas M, Roberts K, Nguyen T, Davis K, Addison RS, Moore JC, Eckhardt SG (2006) A phase I biological and pharmacologic study of the heparanase inhibitor PI-88 in patients with advanced solid tumors. Clin Cancer Res 12:5471–5480PubMedCrossRefGoogle Scholar
  16. Baughman RA, Kapoor SC, Agarwal RK, Kisicki J, Catella-Lawson F, FitzGerald GA (1998) Oral delivery of anticoagulant doses of heparin. A randomized, double-blind, controlled study in humans. Circulation 98:1610–1615PubMedGoogle Scholar
  17. Bazzoni G, Nuñez AB, Mascellani G, Bianchini P, Dejana E, Del Maschio A (1992) Effect of heparin, dermatan sulfate, and related oligo-derivatives on human polymorphonuclear leukocyte functions. J Lab Clin Med 121:268–275Google Scholar
  18. Becker M, Menger MD, Lehr HA (1994) Heparin-released superoxide dismutase inhibits postischemic leukocyte adhesion to venular endothelium. Am J Physiol 267:H925–930PubMedGoogle Scholar
  19. Bendstrup KE, Chambers CB, Jensen JI, Newhouse MT (1999) Lung deposition and clearance of Inhaled 99mTc-heparin in healthy volunteers. Am J Respir Crit Care Med 160:1653–1658PubMedGoogle Scholar
  20. Berkowitz SD, Marder VJ, Kosutic G, Baughman RA (2003) Oral heparin administration with a novel drug delivery agent (SNAC) in healthy volunteers and patients undergoing elective total hip arthroplasty. J Thromb Haemost 1:1914–1919PubMedCrossRefGoogle Scholar
  21. Bono F, Rigon P, Lamarche I, Savi P, Salel V, Herbert J-M (1997) Heparin inhibits the binding of basic fibroblast growth factor to cultured human aortic smooth-muscle cells. Biochem J 326:661–668PubMedGoogle Scholar
  22. Borsig L (2010) Antimetastatic activities of heparins and modified heparins: experimental evidence. Thromb Res 125:S66–S71PubMedCrossRefGoogle Scholar
  23. Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A (2001) Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 98:3352–3357PubMedCrossRefGoogle Scholar
  24. Bowler SD, Smith SM, Laverombe PS (1993) Heparin inhibits the immediate response to antigen in the skin and lungs of allergic subjects. Am Rev Respir Dis 147:160–163PubMedCrossRefGoogle Scholar
  25. Brown RA, Lever R, Jones NA, Page CP (2003) Effects of heparin and related molecules upon neutrophil aggregation and elastase release in vitro. Br J Pharmacol 139:845–853PubMedCrossRefGoogle Scholar
  26. Brown RA, Allegra L, Matera MG, Page CP, Cazzola M (2006) Additional clinical benefit of enoxaparin in COPD patients receiving salmeterol and fluticasone propionate in combination. Pulm Pharmacol Ther 19:419–424PubMedCrossRefGoogle Scholar
  27. Brunnee T, Reddigan SR, Shibayama Y, Kaplan AP, Silverberg M (1997) Mast cell derived heparin activates the contact system: a link to kinin generation in allergic reactions. Clin Exp Allergy 27:653–663PubMedCrossRefGoogle Scholar
  28. Cancio LC (2009) Airway management and smoke inhalation injury in the burn patient. Clin Plast Surg 36:555–567PubMedCrossRefGoogle Scholar
  29. Carr J (1979) The anti-inflammatory action of heparin: Heparin as an antagonist to histamine, bradykinin and prostaglandin E1. Thromb Res 16:507–516PubMedCrossRefGoogle Scholar
  30. Casu B, Vlodavsky I, Sanderson RD (2008) Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 36:195–203PubMedCrossRefGoogle Scholar
  31. Chande N, MacDonald JW, Macdonald JK (2008) Unfractionated or low-molecular weight heparin for induction of remission in ulcerative colitis. Cochrane Database Syst Rev 2:CD006774Google Scholar
  32. Chen G, Wang D, Vikramadithyan R, Yagyu H, Saxena U, Pillarisetti S, Goldberg IJ (2004) Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry 43:4971–4977PubMedCrossRefGoogle Scholar
  33. Clowes AW, Karnovsky MJ (1977) Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 265:625–626PubMedCrossRefGoogle Scholar
  34. Cole GJ, Loewy A, Glaser L (1986) Neuronal cell–cell adhesion depends on interactions of N-CAM with heparin-like molecules. Nature 320:445–447PubMedCrossRefGoogle Scholar
  35. Cribbs RK, Luquette MH, Besner GE (1998) Acceleration of partial-thickness burn wound healing with topical application of heparin-binding EGF-like growth factor (HB-EGF). J Burn Care Rehabil 19:95–101PubMedCrossRefGoogle Scholar
  36. Cribbs RK, Harding PA, Luquette MH, Besner GE (2002) Endogenous production of heparin-binding EGF-like growth factor during murine partial-thickness burn wound healing. J Burn Care Rehabil 23:116–125PubMedCrossRefGoogle Scholar
  37. Darien BJ, Fareed J, Centgraf KS, Hart AP, MacWilliams PS, Clayton MK, Wolf H, Kruse-Elliott KT (1998) Low molecular weight heparin prevents the pulmonary hemodynamic and pathomorphologic effects of endotoxin in a porcine acute lung injury model. Shock 9:274–281PubMedCrossRefGoogle Scholar
  38. Davids H, Ahmed A, Oberholster A, van der Westhuizen C, Mer M, Havlik I (2010) Endogenous heparin levels in the controlled asthmatic patient. S Afr Med J 100:307–308PubMedGoogle Scholar
  39. De Lisser HM, Horng CY, Newman PJ, Muller WA, Buck CA, Albelda SM (1993) Platelet/endothelial cell adhesion molecule-1 (CD31)-mediated cellular aggregation involves cell surface glycosaminoglycans. J Biol Chem 268:16037–16046Google Scholar
  40. Diamant Z, Timmers MC, Van Der Veen H, Page CP, Van Der Meer FJM, Sterk PJ (1996) Effect of inhaled heparin on allergen-induced early and late asthmatic responses in patients with atopic asthma. Am J Respir Crit Care Med 153:1790–1795PubMedGoogle Scholar
  41. Diamond MS, Alon R, Parkos CA, Quinn MT, Springer TA (1995) Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD18). J Cell Biol 130:1473–1482PubMedCrossRefGoogle Scholar
  42. Dolowitz DA, Dougherty TF (1960) The use of heparin as an anti-inflammatory agent. Laryngoscope 70:873–874PubMedGoogle Scholar
  43. Dolowitz DA, Dougherty TF (1965) The use of heparin in the control of allergies. Ann Allergy 23:309–313PubMedGoogle Scholar
  44. Dragstedt CA, Wells JA, Rocha E, Silva M (1942) Inhibitory effect of heparin upon histamine release by trypsin, antigen, and protease. Proc Soc Exp Biol Med 51:191–192Google Scholar
  45. Edovitsky E, Elkin M, Zcharia E, Peretz T, Vlodavsky I (2004) Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 96:1194–1195CrossRefGoogle Scholar
  46. Edovitsky E, Lerner I, Zcharia E, Peretz T, Vlodavsky I, Elkin M (2006) Role of endothelial heparanase in delayed-type hypersensitivity. Blood 107:3609–3616PubMedCrossRefGoogle Scholar
  47. Engelberg H (1999) Actions of heparin that may affect the malignant process. Cancer 85:257–272PubMedCrossRefGoogle Scholar
  48. Engelberg H (2001) Endogenous heparin activity deficiency: the ‘missing link’ in atherogenesis? Atherosclerosis 159:253–260PubMedCrossRefGoogle Scholar
  49. Evangelista V, Piccardoni P, Maugeri N, De Gaetano G, Cerletti C (1992) Inhibition by heparin of platelet activation induced by neutrophil-derived cathepsin G. Eur J Pharmacol 216:401–405PubMedCrossRefGoogle Scholar
  50. Evans RC, Wong VS, Morris AI, Rhodes JM (1997) Treatment of corticosteroid-resistant ulcerative colitis with heparin – a report of 16 cases. Aliment Pharmacol Ther 11:1037–1040PubMedCrossRefGoogle Scholar
  51. Fairbanks MB, Mildner AM, Leone JW, Cavey GS, Mathews WR, Drong RF, Slightom JL, Bienkowski MJ, Smith CW, Bannow CA, Heinrikson RL (1999) Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J Biol Chem 274:29587–29590PubMedCrossRefGoogle Scholar
  52. Ferreira Chacon JM, Mello de Andrea LM, Blanes L, Ferreira LM (2010) Effects of topical application of 10,000 IU heparin on patients with perineal dermatitits and second-degree burns treated in a public pediatric hospital. J Tissue Viability 19:150–158PubMedCrossRefGoogle Scholar
  53. Forsberg E, Pejler G, Ringvall M, Lunderius C, Tomasini-Johansson B, Kusche-Gullberg M, Eriksson I, Ledin J, Hellman L, Kjellén L (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400:773–776PubMedCrossRefGoogle Scholar
  54. Fredens K, Dahl R, Venge P (1991) In vitro studies of the interaction between heparin and eosinophil cationic protein. Allergy 46:27–29PubMedCrossRefGoogle Scholar
  55. Freischlag JA, Colburn MD, Quinones-Baldrich WJ, Moore WS (1992) Heparin, urokinase, and ancrod alter neutrophil function. J Vasc Surg 16:565–572PubMedCrossRefGoogle Scholar
  56. Fritzsche J, Alban S, Ludwig RJ, Rubant S, Boehncke W-H, Schumacher G, Bendas G (2006) The influence of various structural parameters of semisynthetic sulfated polysaccharides on the P-selectin inhibitory capacity. Biochem Pharmacol 72:474–485PubMedCrossRefGoogle Scholar
  57. Fryer A, Huang YC, Rao G, Jacoby D, Mancilla E, Whorton R, Piantadosi CA, Kennedy T, Hoidal J (1997) Selective O-desulfation produces nonanticoagulant heparin that retains pharmacological activity in the lung. J Pharmacol Exp Ther 282:208–219PubMedGoogle Scholar
  58. Gaffney A, Gaffney P (1996) Rheumatoid arthritis and heparin. Br J Rheumatol 35:808PubMedCrossRefGoogle Scholar
  59. Gaffney PR, O’Leary J, Doyle CT, Gaffney A, Hogan J, Smew F, Annis P (1991) Response to heparin in patients with ulcerative colitis. Lancet 337:238–239PubMedCrossRefGoogle Scholar
  60. Gaffney PR, Doyle CT, Gaffney A, Hogan J, Hayes DP, Annis P (1995) Paradoxical response to heparin in 10 patients with ulcerative colitis. Am J Gastroenterol 90:220–223PubMedGoogle Scholar
  61. Gallagher JT (2011) Heparan sulphate: a heparin in miniature. In: Lever R, Mulloy B, Page CP (eds) Heparin – a century of progress. Springer, HeidelbergGoogle Scholar
  62. Ghosh TK, Eis PS, Mullaney JM, Ebert CL, Gill DL (1988) Competitive, reversible and potent antagonism of inositol 1,4,5-triphosphate-activated calcium release by heparin. J Biol Chem 263:11075–11079PubMedGoogle Scholar
  63. Gilat D, Hershkoviz R, Mekori YA, Vlodavsky I, Lider O (1994) Regulation of adhesion of CD4+ T lymphocytes to intact or heparinase-treated subendothelial extracellular matrix by diffusible or anchored RANTES and MIP-1α. J Immunol 153:4899–4906PubMedGoogle Scholar
  64. Giuffrè L, Cordey A-S, Monai N, Tardy Y, Schapira M, Spertini O (1997) Monocyte adhesion to activated aortic endothelium: role of L-selectin and heparan sulfate proteoglycans. J Cell Biol 136:945–956PubMedCrossRefGoogle Scholar
  65. Gonze MD, Salartash K, Sternbergh WC, Baughman RA, Leone-Bay A, Money SR (2000) Orally administered unfractionated heparin with carrier agent is therapeutic for deep venous thrombosis. Circulation 101:2658–2661PubMedGoogle Scholar
  66. Gorski A, Lao M, Gradowska L, Nowaczyk M, Wasik M, Lagodzinski Z (1991) New strategies of heparin treatment used to prolong allograft survival. Transplant Proc 23:2251–2252PubMedGoogle Scholar
  67. Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99:807–818Google Scholar
  68. Green WF, Konnaris K, Woolcock AJ (1993) Effect of salbutamol, fenoterol, and sodium cromoglycate on the release of heparin from sensitized human lung fragments challenged with Dermatophagoides pteronyssinus allergen. Am J Respir Cell Mol Biol 8:518–521PubMedGoogle Scholar
  69. Guyton JR, Rosenberg RD, Clowes AW, Karnovsky (1980) Inhibition of rat arterial smooth muscle cell proliferation by heparin: in vivo studies with anticoagulant and nonanticoagulant heparin. Circ Res 46:625–634PubMedGoogle Scholar
  70. Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE (2005) Regulation of protein function by glycosaminoglycans – as exemplified by chemokines. Annu Rev Biochem 74:385–410PubMedCrossRefGoogle Scholar
  71. Hettiarachchi RJ, Smorenburg SM, Ginsberg J, Levine M, Prins MH, Büller HR (1999) Do heparins do more than just treat thrombosis? The influence of heparins on cancer spread. Thromb Haemost 82:947–952PubMedGoogle Scholar
  72. Hiebert LM (2002) Oral heparins. Clin Lab 48:111–116PubMedGoogle Scholar
  73. Hiebert LM, Ping T, Wice SM (2008) Enhanced antithrombotic effects of unfractionated heparin in rats after repeated oral doses and its relationship to endothelial heparin concentration. Br J Pharmacol 153:1177–1184PubMedCrossRefGoogle Scholar
  74. Hollingsworth SJ, Hoque K, Linnard D, Corry DG, Barker SG (2000) Delivery of low molecular weight heparin for prophylaxis against deep vein thrombosis using a novel, needle-less injection device (J-Tip). Ann R Coll Surg Engl 82:428–431PubMedGoogle Scholar
  75. Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR (1999) Cloning of mammalian heparanase: an essential enzyme involved in tumor invasion and metastasis. Nat Med 5:803–809PubMedCrossRefGoogle Scholar
  76. Hulett MD, Hornby JR, Ohms SJ, Zuegg J, Freeman C, Gready JE, Parish CR (2000) Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 39:15659–15667PubMedCrossRefGoogle Scholar
  77. Humphries DE, Wong GW, Friend DS, Gurish MF, Qiu WT, Huang C, Sharpe AH, Stevens RL (1999) Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400:769–772PubMedCrossRefGoogle Scholar
  78. Inase N, Schreck RE, Lazarus SC (1993) Heparin inhibits histamine release from canine mast cells. Am J Physiol 264:L387–L390PubMedGoogle Scholar
  79. Jaques LB (1979) Heparins – anionic polyelectrolyte drugs. Pharmacol Rev 31:99–167PubMedGoogle Scholar
  80. Johnson Z, Kosco-Vilbois MH, Herren S, Cirillo R, Muzio V, Zaratin P, Carbonatto M, Mack M, Smailbegovic A, Rose M, Lever R, Page C, Wells TN, Proudfoot AE (2004) Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system. J Immunol 173:5776–5785PubMedGoogle Scholar
  81. Jones H, Paul W, Page CP (2002) The effects of heparin and related molecules on vascular permeability and neutrophil accumulation in rabbit skin. Br J Pharmacol 135:469–479PubMedCrossRefGoogle Scholar
  82. Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D (2005) A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene 24:4037–4051PubMedGoogle Scholar
  83. Kallapur SG, Akeson RA (1992) The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans. J Neurosci Res 33:538–548PubMedCrossRefGoogle Scholar
  84. Kanabar V, Hirst SJ, O'Connor BJ, Page CP (2005) Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle. Br J Pharmacol 146:370–377PubMedCrossRefGoogle Scholar
  85. Karnovsky MJ, Wright TC Jr, Castellot JJ Jr, Choay J, Lormeau JC, Petitou M (1989) Heparin, heparan sulfate, smooth muscle cells, and atherosclerosis. Ann NY Acad Sci 556:268–281PubMedCrossRefGoogle Scholar
  86. Kennedy TP (1994) Use of heparin to inhibit interleukin-8. International patent application, WO94/18989Google Scholar
  87. Khorana AA, Sahni A, Altland OD, Francis CW (2003) Heparin inhibition of endothelial cell proliferation and organization is dependent on molecular weight. Arterioscler Thromb Vasc Biol 23:2110–2115PubMedCrossRefGoogle Scholar
  88. Kilfeather SA, Tagoe S, Perez AC, Okona-Mensah K, Matin R, Page CP (1995) Inhibition of serum-induced proliferation of bovine tracheal smooth muscle cells in culture by heparin and related glycosaminoglycans. Br J Pharmacol 114:1442–1446PubMedGoogle Scholar
  89. Kilgore KS, Tanhehco EJ, Naylor KB, Lucchesi BR (1999) Ex vivo reversal of heparin-mediated cardioprotection by heparinase after ischemia and reperfusion. J Pharmacol Exp Therapeut 290:1041–1047Google Scholar
  90. Kiselyov VV, Berezin V, Maar TE, Soroka V, Edvardsen K, Schousboe A, Bock E (1997) The first immunoglobulin-like neural cell adhesion molecule (NCAM) domain is involved in double-reciprocal interaction with the second immunoglobulin-like NCAM domain and in heparin binding. J Biol Chem 272:10125–10134PubMedCrossRefGoogle Scholar
  91. Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A (1998) Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. J Clin Invest 101:877–889PubMedCrossRefGoogle Scholar
  92. Kovanen PT (2009) Mast cells in atherogenesis: actions and reactions. Curr Atheroscler Rep 11:214–219PubMedCrossRefGoogle Scholar
  93. Kuderer NM, Khorana AA, Lyman GH, Francis CW (2007) A meta-analysis and systematic review of the efficacy and safety of anticoagulants as cancer treatment: impact on survival and bleeding complications. Cancer 110:1149–1161PubMedCrossRefGoogle Scholar
  94. Kussie PH, Hulmes JD, Ludwig DL, Patel S, Navarro EC, Seddon AP, Giorgio NA, Bohlen P (1999) Cloning and functional expression of a human heparanase gene. Biochem Biophys Res Commun 261:183–187PubMedCrossRefGoogle Scholar
  95. Laghi-Pasini F, Pasqui AL, Ceccatelli L, Capecchi PL, Orrico A, Di Perri T (1984) Heparin inhibition of polymorphonuclear leukocyte activation in vitro. A possible pharmacological approach to granulocyte-mediated vascular damage. Thromb Res 35:527–537PubMedCrossRefGoogle Scholar
  96. Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873PubMedCrossRefGoogle Scholar
  97. Leculier C, Benzerara O, Couprie N, Francina A, Lasne Y, Archimbaud E, Fiere D (1992) Specific binding between human neutrophils and heparin. Br J Haematol 81:81–85PubMedCrossRefGoogle Scholar
  98. Lever R, Page CP (2002) Novel drug development opportunities for heparin. Nat Rev Drug Discov 1:140–148PubMedCrossRefGoogle Scholar
  99. Lever R, Hoult JRS, Page CP (2000) The effects of heparin and related molecules upon the adhesion of human polymorphonuclear leucocytes to vascular endothelium in vitro. Br J Pharmacol 129:533–540PubMedCrossRefGoogle Scholar
  100. Lever R, Lo WT, Faraidoun M, Amin V, Brown RA, Gallagher J, Page CP (2007) Size-fractionated heparins have differential effects on human neutrophil function in vitro. Br J Pharmacol 151:837–843PubMedCrossRefGoogle Scholar
  101. Lever R, Smailbegovic A, Page CP (2010) Locally available heparin modulates inflammatory cell recruitment in a manner independent of anticoagulant activity. Eur J Pharmacol 630:137–144PubMedCrossRefGoogle Scholar
  102. Ley K, Cerrito M, Arfors K-E (1991) Sulfated polysaccharides inhibit leukocyte rolling in rabbit mesentery venules. Am J Physiol 260:H1667–H1673PubMedGoogle Scholar
  103. Li L-F, Huang C-C, Lin H-C, Tsai Y-H, Quinn DA, Liao S-K (2009) Unfractionated heparin and enoxaparin reduce high-stretch ventilation augmented lung injury: a prospective, controlled animal experiment. Crit Care 13:R108PubMedCrossRefGoogle Scholar
  104. Lider O, Baharav E, Mekori YA, Miller T, Naparstek Y, Vlodavsky I, Cohen IR (1989) Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparin. J Clin Invest 83:752–756PubMedCrossRefGoogle Scholar
  105. Lider O, Mekori YA, Miller T, Bar-Tana R, Vlodavsky I, Baharav E, Cohen IR, Naparstek Y (1990) Inhibition of T lymphocyte heparanase by heparin prevents T cell migration and T cell-mediated immunity. Eur J Immunol 20:493–499PubMedCrossRefGoogle Scholar
  106. Lilly JD, Parsons CL (1990) Bladder surface glycosaminoglycans is a human epithelial permeability barrier. Surg Gynaecol Obstet 171:493–496Google Scholar
  107. Maarsingh H, de Boer J, Kauffman HF, Zaagsma J, Meurs H (2004) Heparin normalizes allergen-induced nitric oxide deficiency and airway hyperresponsiveness. Br J Pharmacol 142:1293–1299PubMedCrossRefGoogle Scholar
  108. Marchetti M, Vignoli A, Russo L, Balducci D, Pagnoncelli M, Barbui T, Falanga A (2008) Endothelial capillary tube formation and cell proliferation induced by tumor cells are affected by low molecular weight heparins and unfractionated heparin. Thromb Res 121:637–645PubMedCrossRefGoogle Scholar
  109. Matzner Y, Marx G, Drexler R, Eldor A (1984) The inhibitory effect of heparin and related glycosaminoglycans on neutrophil chemotaxis. Thromb Haemost 52:134–137PubMedGoogle Scholar
  110. Matzner Y, Vlodavsky I, Bar-Ner M, Ishai-Michaeli R, Tauber AI (1992) Subcellular localization of heparanase in human neutrophils. J Leukoc Biol 51:519–524PubMedGoogle Scholar
  111. McCaffrey TA, Falcone DJ, Brayton CF, Agarwal LA, Welt FG, Weksler BB (1989) Transforming growth factor-β activity is potentiated by heparin via dislocation of the transforming growth factor-β/α2-macroglobulin inactive complex. J Cell Biol 109:441–448PubMedCrossRefGoogle Scholar
  112. McKenzie EA (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151:1–14PubMedCrossRefGoogle Scholar
  113. McKenzie E, Tyson K, Stamps A, Smith P, Turner P, Barry R, Hircock M, Patel S, Barry E, Stubberfield C, Terrett J, Page M (2000) Cloning and expression profiling of hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 276:1170–1177PubMedCrossRefGoogle Scholar
  114. Mehrad B, Keane MP, Strieter RM (2007) Chemokines as mediators of angiogenesis. Thromb Haemost 97:755–762PubMedGoogle Scholar
  115. Michell NP, Lalor P, Langman MJ (2001) Heparin therapy for ulcerative colitis? Effects and mechanisms. Eur J Gastroenterol Hepatol 13:449–456PubMedCrossRefGoogle Scholar
  116. Miller MD, Krangel MS (1992) Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit Rev Immunol 12:17–46PubMedGoogle Scholar
  117. Miller AC, Rivero A, Ziad S, Smith DJ, Elamin EM (2009) Influence of nebulized unfractionated heparin and N-acetylcysteine in acute lung injury after smoke inhalation injury. J Burn Care Res 30:249–256PubMedCrossRefGoogle Scholar
  118. Mousa SA (2010) Heparin and low-molecular weight heparins in thrombosis and beyond. Methods Mol Biol 663:109–132PubMedCrossRefGoogle Scholar
  119. Mousa SA, Fareed J, Iqbal O, Kaiser B (2004) Tissue factor pathway inhibitor in thrombosis and beyond. Methods Mol Med 93:133–155PubMedGoogle Scholar
  120. Mousa SA, Linhardt R, Francis JL, Amirkkhosravi A (2006) Anti-metastatic effect of a non-anticoagulant low-molecular-weight heparin versus the standard low-molecular weight heparin, enoxaparin. Thromb Haemost 96:816–821PubMedGoogle Scholar
  121. Mulloy B, Crane DT, Drake AF, Davies DB (1996) The interaction between heparin and polylysine: a circular dichroism and molecular modelling study. Braz J Med Biol Res 29:721–729PubMedGoogle Scholar
  122. Muramatsu T, Muramatsu H (2008) Glycosaminoglycan-binding cytokines as tumor markers. Proteomics 8:3350–3359PubMedCrossRefGoogle Scholar
  123. Murch SH, MacDonald TT, Walker-Smith JA, Levin M, Lionetti P, Klein NJ (1993) Disruption of sulphated glycosaminoglycans in intestinal inflammation. Lancet 341:711–714PubMedCrossRefGoogle Scholar
  124. Mustafa F, Yang T, Khan MA, Ahsan F (2004) Chain length-dependent effects of alkylmaltosides on nasal absorption of enoxaparin. J Pharm Sci 93:675–683PubMedCrossRefGoogle Scholar
  125. Nakajima M, Irimura T, Nicolson GL (1988) Heparanases and tumor metastasis. J Cell Biochem 36:157–167PubMedCrossRefGoogle Scholar
  126. Naparstek E, Slavin S, Weiss L, Sidi H, Ohana M, Reich S, Vlodavsky I, Cohen IR, Naparstek Y (1993) Low-dose heparin inhibits acute graft versus host disease in mice. Bone Marrow Transplant 12:185–189PubMedGoogle Scholar
  127. Nelson RM, Cecconi O, Roberts WG, Aruffo A, Linhardt RJ, Bevilacqua MP (1993) Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 82:3253–3258PubMedGoogle Scholar
  128. Niers TM, Klerk CP, DiNisio M, Van Noorden CJ, Büller HR, Reitsma PH, Richel DJ (2007) Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Crit Rev Oncol Hematol 33:358–368Google Scholar
  129. Noga O, Brunnee T, Schaper C, Kunkel G (1999) Heparin, derived from the mast cells of human lungs is responsible for the generation of kinins in allergic reactions due to the activation of the contact system. Int Arch Allergy Immunol 120:310–316PubMedCrossRefGoogle Scholar
  130. Okona-Mensah KB, Shittu E, Page C, Costello J, Kilfeather SA (1998) Inhibition of serum and transforming growth factor beta (TGF-β1)-induced DNA synthesis in confluent airway smooth muscle by heparin. Br J Pharmacol 125:599–606PubMedCrossRefGoogle Scholar
  131. Oremus M, Hanson M, Whitlock R, Young E, Archer C, Dal Cin A, Gupta A, Raina P (2007) A systematic review of heparin to treat burn injury. J Burn Care Res 28:794–804PubMedCrossRefGoogle Scholar
  132. Page CP (1991) One explanation of the asthma paradox: inhibition of natural anti-inflammatory mechanism by beta 2-agonists. Lancet 337:717–720PubMedCrossRefGoogle Scholar
  133. Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471:M99–M108PubMedGoogle Scholar
  134. Parsons CL (1997) Epithelial coating techniques in the treatment of interstitial cystitis. Urology 49:100–104PubMedCrossRefGoogle Scholar
  135. Pégorier S, Wagner LA, Gleich GJ, Pretolani M (2006) Eosinophil-derived cationic proteins activate the synthesis of remodeling factors by airway epithelial cells. J Immunol 177:4861–4869PubMedGoogle Scholar
  136. Peter K, Schwarz M, Conradt C, Nordt T, Moser M, Kübler W, Bode C (1999) Heparin inhibits ligand binding to the leukocyte integrin Mac-1 (CD11b/CD18). Circulation 100:1533–1539PubMedGoogle Scholar
  137. Petitou M, Nancy-Portebois V, Dubreucq G, Motte V, Meuleman D, de Kort M, van Boeckel CA, Vogel GM, Wisse JA (2009) From heparin to EP217609: the long way to a new pentasaccharide-based neutralisable anticoagulant with an unprecedented pharmacological profile. Thromb Haemost 102:804–810PubMedGoogle Scholar
  138. Piccardoni P, Evangelista V, Piccoli A, De Gaetano G, Walz A, Cerletti C (1996) Thrombin-activated platelets release two NAP-2 variants that stimulate polymorphonuclear leukocytes. Thromb Haemost 76:780–785PubMedGoogle Scholar
  139. Pinel C, Wice SM, Hiebert LM (2004) Orally administered heparins prevent arterial thrombosis in a rat model. Thromb Haemost 91:919–926PubMedGoogle Scholar
  140. Pineo GF, Hull RD, Marder VJ (2001) Orally active heparin and low-molecular-weight heparin. Curr Opin Pulm Med 7:344–348PubMedCrossRefGoogle Scholar
  141. Pitchford SC, Yano H, Lever R, Riffo-Vasquez Y, Ciferri S, Rose MJ, Giannini S, Momi S, Spina D, O'connor B, Gresele P, Page CP (2003) Platelets are essential for leukocyte recruitment in allergic inflammation. J Allergy Clin Immunol 112:109–118PubMedCrossRefGoogle Scholar
  142. Powell AK, Yates EA, Fernig DG, Turnbull JE (2004) Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology 14:17R–30RPubMedCrossRefGoogle Scholar
  143. Prince RN, Schreiter ER, Zou P, Wiley HS, Ting AY, Lee RT, Lauffenburger DA (2010) The heparin-binding domain of HB-EGF mediates localization to sites of cell–cell contact and prevents HB-EGF proteolytic release. J Cell Sci 123:2308–2318PubMedCrossRefGoogle Scholar
  144. Qi Y, Zhao G, Liu D, Shriver Z, Sundaram M, Sengupta S, Venkataraman G, Langer R, Sasisekharan R (2004) Delivery of therapeutic levels of heparin and low-molecular-weight heparin through a pulmonary route. Proc Natl Acad Sci USA 101:9867–9872PubMedCrossRefGoogle Scholar
  145. Radulescu A, Zhang HY, Chen CL, Chen Y, Zhou Y, Yu X, Otabor I, Olson JK, Besner GE (2010) Heparin-binding egf-like growth factor promotes intestinal anastomotic healing. J Surg Res doi:10.1016/j.jss.2010.06.036
  146. Rawat A, Yang T, Hussain A, Ahsan F (2008) Complexation of a poly-L-arginine with low molecular weight heparin enhances pulmonary absorption of the drug. Pharm Res 25:936–948PubMedCrossRefGoogle Scholar
  147. Redini F, Tixier JM, Petitou M, Choay J, Robert L, Hornebeck S (1988) Inhibition of leucocyte elastase by heparin and its derivatives. Biochem J 252:515–519PubMedGoogle Scholar
  148. Revelle BM, Scott D, Beck PJ (1996) Single amino acid residues in the E- and P-selectin epidermal growth factor domains can determine carbohydrate binding specificity. J Biol Chem 271:16160–16170PubMedCrossRefGoogle Scholar
  149. Rohrer MJ, Kestin AS, Ellis PA, Barnard MR, Rodino L, Breckwoldt WL, Li J-M, Michelson AD (1992) High-dose heparin supresses platelet α-granule secretion. J Vasc Surg 15:1000–1009PubMedCrossRefGoogle Scholar
  150. Salas A, Sans M, Soriano A, Reverter JC, Anderson DC, Piqué JM, Panés J (2000) Heparin attenuates TNF-alpha induced inflammatory response through a CD11b dependent mechanism. Gut 47:88–96PubMedCrossRefGoogle Scholar
  151. Samoszuk M, Corwin M, Yu H, Wang J, Nalcioglu O, Su MY (2003) Inhibition of thrombosis in melanoma allografts in mice by endogenous mast cell heparin. Thromb Haemost 90:351–360PubMedGoogle Scholar
  152. Samoszuk M, Kanakubo E, Chan JK (2005) Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts. BMC Cancer 5:121PubMedCrossRefGoogle Scholar
  153. Sasaki M, Herd CM, Page CP (1993) Effect of heparin and a low-molecular weight heparinoid on PAF-induced airway responses in neonatally immunized rabbits. Br J Pharmacol 110:107–112PubMedGoogle Scholar
  154. Sciumbata T, Caretto P, Pirovano P, Pozzi P, Cremonesi P, Galimberti G, Leoni F, Marcucci F (1996) Treatment with modified heparins inhibits experimental metastasis formation and leads, in some animals, to long-term survival. Invasion Metastasis 16:132–143PubMedGoogle Scholar
  155. Seeds EAM, Page CP (2001) Heparin inhibits allergen-induced eosinophil infiltration into guinea-pig lung via a mechanism unrelated to its anticoagulant activity. Pulm Pharmacol Ther 14:111–119PubMedCrossRefGoogle Scholar
  156. Seeds EAM, Hanss J, Page CP (1993) The effect of heparin and related proteoglycans on allergen and PAF-induced eosinophil infiltration. J Lipid Mediat 7:269–278PubMedGoogle Scholar
  157. Seeds EAM, Horne AP, Tyrrell DJ, Page CP (1995) The effect of inhaled heparin and related glycosaminoglycans on allergen-induced eosinophil infiltration in guinea-pigs. Pulm Pharmacol 8:97–105PubMedCrossRefGoogle Scholar
  158. Sen S, Meteoglu I, Ogurlu M, Sen S, Derinceoz OO, Barutca S (2009) Topical heparin: a promising agent for the prevention of tracheal stenosis in airway suregery. J Surg Res 157:e23–e29PubMedCrossRefGoogle Scholar
  159. Shankar VK, Handa A, Hands L (2008) Endogenous heparin activity is decreased in peripheral arterial occlusive disease. J Vasc Surg 47:1033–1038PubMedCrossRefGoogle Scholar
  160. Shen J, Ran ZH, Tong JL, Xiao SD (2007) Meta-analysis: the utility and safety of heparin in the treatment of active ulcerative colitis. Aliment Pharmacol Ther 26:653–663PubMedCrossRefGoogle Scholar
  161. Shute J (2011) Glycosaminoglycan and chemokine/growth factor interactions. In: Lever R, Mulloy B, Page CP (eds) Heparin – a century of progress. Springer, HeidelbergGoogle Scholar
  162. Shute JK, Parmar J, Holgate ST, Howart PH (1997) Urinary glycosaminoglycan levels are increased in acute severe asthma – a role for eosinophil-derived gelatinase B? Int Arch Allergy Immunol 113:366–367PubMedCrossRefGoogle Scholar
  163. Silvestro L, Viano I, Macario M, Colangelo D, Montrucchio G, Panico S, Fantozzi R (1994) Effects of heparin and its desulfated derivatives on leukocyte-endothelial adhesion. Semin Thromb Hemost 20:254–258PubMedCrossRefGoogle Scholar
  164. Simard JM, Schreibman D, Aldrich EF, Stallmeyer B, Le B, James RF, Beaty N (2010) Unfractionated heparin: multitargeted therapy for delayed neurological deficits induced by subarachnoid hemorrhage. Neurocrit Care 13(3):439–449PubMedCrossRefGoogle Scholar
  165. Skinner MP, Lucas CM, Burns GF, Chesterman CN, Berndt MC (1991) GMP-140 binding to neutrophils is inhibited by sulfated glycans. J Biol Chem 266:5371–5374PubMedGoogle Scholar
  166. Slungaard A, Vercellotti GM, Walker G, Nelson RD, Jacob HS (1990) Tumor necrosis factor-α/cachectin stimulates eosinophil oxidant production and toxicity towards human endothelium. J Exp Med 171:2025–2041PubMedCrossRefGoogle Scholar
  167. Smailbegovic A, Lever R, Page CP (2001) The effects of heparin on the adhesion of human peripheral blood mononuclear cells to human stimulated umbilical vein endothelial cells. Br J Pharmacol 134:827–836PubMedCrossRefGoogle Scholar
  168. Smorenburg SM, Van Noorden CJ (2001) The complex effects of heparins on cancer progression and metastasis in experimental studies. Pharmacol Rev 53:93–105PubMedGoogle Scholar
  169. Smorenburg SM, Hettiarachchi RJ, Vink R, Büller HR (1999) The effects of unfractionated heparin on survival in patients with malignancy – a systematic review. Thromb Haemost 82:1600–1604PubMedGoogle Scholar
  170. Stevenson JL, Choi SH, Varki A (2005) Differential metastasis inhibition by clinically relevant levels of heparins – correlation with selectin inhibition, not antithrombotic activity. Clin Cancer Res 11:7003–7011PubMedCrossRefGoogle Scholar
  171. Stevenson JL, Varki A, Borsig L (2007) Heparin attenuates metastasis mainly due to inhibition of P- and L-selectin, but non-anticoagulant heparins can have additional effects. Thromb Res 120:S107–S111PubMedCrossRefGoogle Scholar
  172. Swaminathan GJ, Myszka DG, Katsamba PS, Ohnuki LE, Gleich GJ, Acharya KR (2005) Eosinophil-granule major basic protein, a C-type lectin, binds heparin. Biochemistry 44:14152–14158PubMedCrossRefGoogle Scholar
  173. Sy MS, Schneeberger E, McCluskey R, Greene MI, Rosenberg RD, Benacerraf B (1983) Inhibition of delayed-type hypersensitivity by heparin depleted of anticoagulant activity. Cell Immunol 82:23–32PubMedCrossRefGoogle Scholar
  174. Takahashi H, Ebihara S, Okazaki T, Asada M, Sasaki H, Yamaya M (2005) A comparison of the effects of unfractionated heparin, dalteparin and danaparoid on vascular endothelial growth factor-induced tumour angiogenesis and heparanase activity. Br J Pharmacol 146:333–343PubMedCrossRefGoogle Scholar
  175. Tangelder GJ, Arfors K-E (1991) Inhibition of leukocyte rolling in venules by protamine and sulfated polysaccharides. Blood 7:1565–1571Google Scholar
  176. Taylor KR, Gallo RL (2006) Glycosaminoglycans and their proteoglycans@host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 20:9–22PubMedCrossRefGoogle Scholar
  177. Teixeira MM, Hellewell PG (1993) Suppression by intradermal administration of heparin of eosinophil accumulation but not oedema formation in inflammatory reactions in guinea-pig skin. Br J Pharmacol 110:1496–1500PubMedGoogle Scholar
  178. Teixeira MM, Rossi AG, Hellewell PG (1996) Adhesion mechanisms involved in C5a-induced eosinophil homotypic aggregation. J Leukoc Biol 59:389–396PubMedGoogle Scholar
  179. Tekkök IH, Tekkök S, Ozcan OE, Erbengi T, Erbengi A (1994) Preventive effect of intracisternal heparin for proliferative angiopathy after experimental subarachnoid haemorrhage in rats. Acta Neurochir (Wien) 127:112–117CrossRefGoogle Scholar
  180. Toon MH, Maybauer MO, Greenwood JE, Maybauer DM, Fraser JF (2010) Management of acute smoke inhalation injury. Crit Care Resusc 12:53–61PubMedGoogle Scholar
  181. Turnbull J, Powell A, Guimond S (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol 11:75–82PubMedCrossRefGoogle Scholar
  182. Tyrrell DJ, Horne AP, Holme KR, Preuss JM, Page CP (1999) Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv Pharmacol 46:151–208PubMedCrossRefGoogle Scholar
  183. Uno F, Fujiwara T, Takata Y, Ohtani S, Katsuda K, Takaoka M, Ohkawa T, Naomoto Y, Nakajima M, Tanaka N (2001) Antisense-mediated suppression of human heparanase gene expression inhibits pleural dissemination of human cancer cells. Cancer Res 61:7855–7860PubMedGoogle Scholar
  184. Vancheri C, Mastruzzo C, Armato F, Tomaselli V, Magrì S, Pistorio MP, LaMicela M, D'amico L, Crimi N (2001) Intranasal heparin reduces eosinophil recruitment after nasal allergen challenge in patients with allergic rhinitis. J Allergy Clin Immunol 108:703–708PubMedCrossRefGoogle Scholar
  185. Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108:341–347PubMedGoogle Scholar
  186. Vlodavsky I, Eldor A, Haimovitz-Friedman A, Matzner Y, Ishai-Michaeli R, Lider O, Naparstek Y, Cohen IR, Fuks Z (1992) Expression of heparinase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127PubMedGoogle Scholar
  187. Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai-Michaeli R, Bitan M, Pappo O, Peretz T, Michal I, Spector L, Pecker I (1999) Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 5:793–802PubMedCrossRefGoogle Scholar
  188. Wagner S, Dues G, Sawitzky D, Frey P, Christ B (2004) Assessment of the biological performance of the needle-free injector INJEX using the isolated porcine forelimb. Br J Dermatol 150:455–461PubMedCrossRefGoogle Scholar
  189. Walsh RL, Dillon TJ, Scicchitano R, McLennan G (1991) Heparin and heparan sulphate are inhibitors of human leucocyte elastase. Clin Sci 81:341–346PubMedGoogle Scholar
  190. Wang Y, Kovanen PT (1999) Heparin proteoglycans released from rat serosal mast cells inhibit proliferation of rat aortic smooth muscle cells in culture. Circ Res 84:74–83PubMedGoogle Scholar
  191. Watt SM, Williamson J, Genevier H, Fawcett J, Simmons DL, Hatzfield A, Nesbitt SA, Coombe DR (1993) The heparin binding PECAM-1 adhesion molecule is expressed by CD34+ hematopoietic precursor cells with early myeloid and B-lymphoid cell phenotypes. Blood 82:2649–2663PubMedGoogle Scholar
  192. Willenborg DO, Parish CR (1988) Inhibition of allergic encephalomyelitis in rats by treatment with sulphated polysaccharides. J Immunol 140:3401–3405PubMedGoogle Scholar
  193. Wladyslaw S (2002) Endogenous heparin – a protective marker in patients with myocardial infarction. Coron Artery Dis 13:423–426PubMedCrossRefGoogle Scholar
  194. Xie X, Thorlacius H, Raud J, Hedqvist P, Lindbom L (1997) Inhibitory effect of locally administered heparin on leukocyte rolling and chemoattractant-induced firm adhesion in rat mesenteric venules in vivo. Br J Pharmacol 122:906–910PubMedCrossRefGoogle Scholar
  195. Yanaka K, Nose T, Hindman BJ (1996) Heparin ameliorates brain injury by inhibiting leukocyte accumulation. Stroke 27:2146–2147PubMedCrossRefGoogle Scholar
  196. Yang T, Hussain A, Paulson J, Abbruscato TJ, Ahsan F (2004a) Cyclodextrins in nasal delivery of low-molecular-weight heparins: in vivo and in vitro studies. Pharm Res 21:1127–1136PubMedCrossRefGoogle Scholar
  197. Yang T, Mustafa F, Ahsan F (2004b) Alkanoylsucroses in nasal delivery of low molecular weight heparins: in-vivo absorption and reversibility studies in rats. J Pharm Pharmacol 56:53–60PubMedCrossRefGoogle Scholar
  198. Yang T, Mustafa F, Bai S, Ahsan F (2004c) Pulmonary delivery of low molecular weight heparins. Pharm Res 21:2009–2016PubMedCrossRefGoogle Scholar
  199. Yang T, Hussain A, Bai S, Khalil IA, Harashima H, Ahsan F (2006) Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin. J Control Release 115:289–297PubMedCrossRefGoogle Scholar
  200. Zacharski LR, Ornstein DL (1988) Heparin and cancer. Thromb Haemost 80:10–23Google Scholar
  201. Zacharski LR, Ornstein DL, Mamourian AC (2000) Low-molecular-weight heparin and cancer. Semin Thromb Hemost 26:69–77PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.The School of PharmacyUniversity of LondonLondonUK
  2. 2.Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College LondonLondonUK

Personalised recommendations