Root Exudates of Legume Plants and Their Involvement in Interactions with Soil Microbes

  • Akifumi SugiyamaEmail author
  • Kazufumi Yazaki
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 12)


Plants secrete both high- and low-molecular weight compounds from their roots, and these root exudates function not only as nutrients for soil microbes but as signal molecules in plant–microbe interactions. Legume plants establish symbiotic interactions with rhizobia and arbuscular mycorrhizal fungi to obtain several nutrients such as nitrogen and phosphate. In these interactions, flavonoids and strigolactones in root exudates serve as signal molecules to establish the symbiotic interactions. Root exudates from some legume plants also function to acidify surrounding soils to acquire phosphate. Here, we provide an overview of the functions of legume root exudates with emphasis on the interaction between legume plants and soil microbes and also on the acquisition of nutrients from surrounding soil.


Arbuscular Mycorrhizal Fungus Root Exudate White Lupin Cluster Root Legume Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedGoogle Scholar
  2. Akiyama K, Tanigawa F, Kashihara T, Hayashi H (2010) Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochemistry 71:1865–1871PubMedGoogle Scholar
  3. Ausmees N, Kobayashi H, Deakin WJ, Marie C, Krishnan HB, Broughton WJ, Perret X (2004) Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234. J Bacteriol 186:4774–4780PubMedGoogle Scholar
  4. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681PubMedGoogle Scholar
  5. Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Pena C, Jasinski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146:762–771PubMedGoogle Scholar
  6. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650PubMedGoogle Scholar
  7. Baier R, Schiene K, Kohring B, Flaschel E, Niehaus K (1999) Alfalfa and tobacco cells react differently to chitin oligosaccharides and Sinorhizobium meliloti nodulation factors. Planta 210:157–164PubMedGoogle Scholar
  8. Bassam BJ, Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1988) Identification of a nodD-dependent locus in the Rhizobium strain NGR234 activated by phenolic factors secreted by soybeans and other legumes. Mol Plant-Microbe Interact. 1:161–168PubMedGoogle Scholar
  9. Batten K, Scow K, Davies K, Harrison S (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8:217–230Google Scholar
  10. Begum AA, Leibovitch S, Migner P, Zhang F (2001) Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot 52:1537–1543PubMedGoogle Scholar
  11. Benson HP, Boncompagni E, Guerinot ML (2005) An iron uptake operon required for proper nodule development in the Bradyrhizobium japonicum-soybean symbiosis. Mol Plant Microbe Interact 18:950–959PubMedGoogle Scholar
  12. Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol 6:358–364PubMedGoogle Scholar
  13. Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M, Sadowsky MJ, Sumner LW, Stacey G (2010) Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol 153:1808–1822PubMedGoogle Scholar
  14. Brito B, Palacios JM, Hidalgo E, Imperial J, Ruiz-Argueso T (1994) Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits. J Bacteriol 176:5297–5303PubMedGoogle Scholar
  15. Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698PubMedGoogle Scholar
  16. Caetano-Anolles G, Crist-Estes DK, Bauer WD (1988) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170:3164–3169PubMedGoogle Scholar
  17. Cardenas L, Dominguez J, Santana O, Quinto C (1996) The role of the nodI and nodJ genes in the transport of Nod metabolites in Rhizobium etli. Gene 173:183–187PubMedGoogle Scholar
  18. Carter RA, Worsley PS, Sawers G, Challis GL, Dilworth MJ, Carson KC, Lawrence JA, Wexler M, Johnston AW, Yeoman KH (2002) The vbs genes that direct synthesis of the siderophore vicibactin in Rhizobium leguminosarum: their expression in other genera requires ECF sigma factor RpoI. Mol Microbiol 44:1153–1166PubMedGoogle Scholar
  19. Cho MJ, Harper JE (1991) Effect of inoculation and nitrogen on isoflavonoid concentration in wild-type and nodulation-mutant soybean roots. Plant Physiol 95:435–442PubMedGoogle Scholar
  20. Christie RM (2007) Why is indigo blue? Biotech Histochem 82:51–56PubMedGoogle Scholar
  21. Currier WW, Strobel GA (1976) Chemotaxis of Rhizobium spp. to plant root exudates. Plant Physiol 57:820–823PubMedGoogle Scholar
  22. Dakora FD (2000) Commonality of root nodulation signals and nitrogen assimilation in tropical grain legumes belonging to the tribe Phaseoleae. Australian Journal of Plant Physiology 27: 885–892Google Scholar
  23. De-la-Pena C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. J Biol Chem 283:25247–25255PubMedGoogle Scholar
  24. De-la-Pena C, Badri DV, Lei Z, Watson BS, Brandao MM, Silva-Filho MC, Sumner LW, Vivanco JM (2010) Root secretion of defense-related proteins is development-dependent and correlated with flowering time. J Biol Chem 285:30654–30665PubMedGoogle Scholar
  25. Delgado MJ, Tresierra-Ayala A, Talbi C, Bedmar EJ (2006) Functional characterization of the Bradyrhizobium japonicum modA and modB genes involved in molybdenum transport. Microbiology 152:199–207PubMedGoogle Scholar
  26. Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327PubMedGoogle Scholar
  27. Desbrosses GG, Kopka J, Udvardi MK (2005) Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol 137:1302–1318PubMedGoogle Scholar
  28. Dharmatilake AJ, Bauer WD (1992) Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from Alfalfa roots. Appl Environ Microbiol 58:1153–1158PubMedGoogle Scholar
  29. Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131:878–885PubMedGoogle Scholar
  30. Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1987) Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J 6:173–1179Google Scholar
  31. Downs CT, McDonald PM, Brown K, Ward D (2003) Effects of Acacia condensed tannins on urinary parameters, body mass, and diet choice of an Acacia specialist rodent, Thallomys nigricauda. J Chem Ecol 29:845–858PubMedGoogle Scholar
  32. Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910PubMedGoogle Scholar
  33. Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90:791–800Google Scholar
  34. Egelhoff TT, Long SR (1985) Rhizobium meliloti nodulation genes: identification of nodDABC gene products, purification of nodA protein, and expression of nodA in Rhizobium meliloti. J Bacteriol 164:591–599PubMedGoogle Scholar
  35. Egelhoff TT, Fisher RF, Jacobs TW, Mulligan JT, Long SR (1985) Nucleotide sequence of Rhizobium meliloti 1021 nodulation genes: nodD is read divergently from nodABC. DNA 4:241–248PubMedGoogle Scholar
  36. Farag MA, Huhman DV, Dixon RA, Sumner LW (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 146:387–402PubMedGoogle Scholar
  37. Farag MA, Deavours BE, de Fatima A, Naoumkina M, Dixon RA, Sumner LW (2009) Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in Medicago truncatula cell cultures. Plant Physiol 151:1096–1113PubMedGoogle Scholar
  38. Fauvart M, Michiels J (2008) Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol Lett 285:1–9PubMedGoogle Scholar
  39. Fernandez-Lopez M, D’Haeze W, Mergaert P, Verplancke C, Prome JC, Van Montagu M, Holsters M (1996) Role of nodl and nodJ in lipo-chitooligosaccharide secretion in Azorhizobium caulinodans and Escherichia coli. Mol Microbiol 20:993–1000PubMedGoogle Scholar
  40. Fisher RF, Long SR (1992) Rhizobium–plant signal exchange. Nature 357:655–660PubMedGoogle Scholar
  41. Firmin JL, Wilson KE, Rossen L, Johnston AWB (1986) Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324:90–92Google Scholar
  42. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091PubMedGoogle Scholar
  43. Gagnon H, Ibrahim RK (1998) Aldonic Acids: A Novel Family of nod Gene Inducers of Mesorhizobium loti, Rhizobium lupini, and Sinorhizobium meliloti. Mol Plant Microbe Interact 11:988–998Google Scholar
  44. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672PubMedGoogle Scholar
  45. Garcia-Garrido JM, Lendzemo V, Castellanos-Morales V, Steinkellner S, Vierheilig H (2009) Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza 19:449–459PubMedGoogle Scholar
  46. Goldwasser Y, Yoneyama K, Xie X, Yoneyama K (2008) Production of Strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regul 55:21–28Google Scholar
  47. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedGoogle Scholar
  48. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877PubMedGoogle Scholar
  49. Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266PubMedGoogle Scholar
  50. Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (1990) Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce nod Genes in Rhizobium meliloti. Plant Physiol 92:116–122PubMedGoogle Scholar
  51. Hernandez G, Valdes-Lopez O, Ramirez M, Goffard N, Weiller G, Aparicio-Fabre R, Fuentes SI, Erban A, Kopka J, Udvardi MK, Vance CP (2009) Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol 151:1221–1238PubMedGoogle Scholar
  52. Hess SY, Lonnerdal B, Hotz C, Rivera JA, Brown KH (2009) Recent advances in knowledge of zinc nutrition and human health. Food Nutr Bull 30:S5–S11PubMedGoogle Scholar
  53. Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421PubMedGoogle Scholar
  54. Horiuchi J, Prithiviraj B, Bais HP, Kimball BA, Vivanco JM (2005) Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222:848–857PubMedGoogle Scholar
  55. Hungria M, Joseph CM, Phillips DA (1991) Anthocyanidins and flavonols, major nod gene Inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol 97:751–758PubMedGoogle Scholar
  56. Ikeda S, Rallos LE, Okubo T, Eda S, Inaba S, Mitsui H, Minamisawa K (2008) Microbial community analysis of field-grown soybeans with different nodulation phenotypes. Appl Environ Microbiol 74:5704–5709PubMedGoogle Scholar
  57. Innes L, Hobbs PJ, Bardgett RD (2004) The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biol Fertil Soils 40:7–13Google Scholar
  58. Jin CW, Li GX, Yu XH, Zheng SJ (2010) Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann Bot 105:835–841PubMedGoogle Scholar
  59. Johnston AW, Yeoman KH, Wexler M (2001) Metals and the rhizobial-legume symbiosis–uptake, utilization and signalling. Adv Microb Physiol 45:113–156PubMedGoogle Scholar
  60. Keshavan ND, Chowdhary PK, Haines DC, Gonzalez JE (2005) L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:8427–8436PubMedGoogle Scholar
  61. Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci USA 84:7428–7432PubMedGoogle Scholar
  62. Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962PubMedGoogle Scholar
  63. Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M, Yokoyama T, Ohyama T, Asamizu E, Kuwata C, Shibata D, Tabata S (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11:263–274PubMedGoogle Scholar
  64. Kowalchuka GA, Hola WHG, Van Veen JA (2006) Rhizosphere fungal communities are influenced by Senecio jacobaea pyrrolizidine alkaloid content and composition. Soil Biol Biochem 38:2852–2859Google Scholar
  65. Krishnan HB (2002) NolX of Sinorhizobium fredii USDA257, a type III-secreted protein involved in host range determination, Iis localized in the infection threads of cowpea (Vigna unguiculata [L.] Walp) and soybean (Glycine max [L.] Merr.) nodules. J Bacteriol 184:831–839PubMedGoogle Scholar
  66. Krishnan HB, Lorio J, Kim WS, Jiang G, Kim KY, DeBoer M, Pueppke SG (2003) Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Mol Plant Microbe Interact 16:617–625PubMedGoogle Scholar
  67. Lefebvre DD, Duff SM, Fife CA, Julien-Inalsingh C, Plaxton WC (1990) Response to phosphate deprivation in Brassica nigra suspension cells: enhancement of intracellular, cell surface, and secreted phosphatase activities compared to increases in Pi-absorption rate. Plant Physiol 93:504–511PubMedGoogle Scholar
  68. Li M, Osaki M, Rao IM, Tadano T (1997) Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant Soil 195:161–169Google Scholar
  69. Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302:630–633PubMedGoogle Scholar
  70. Lopez-Raez JA, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Becard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874PubMedGoogle Scholar
  71. Loyola-Vargas VM, Broeckling CD, Badri D, Vivanco JM (2007) Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225:301–310PubMedGoogle Scholar
  72. Lucas Garcia JA, Barbas C, Probanza A, Barrientos ML, Gutierrez Manero FJ (2001) Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages. Phytochem Anal 12:305–311PubMedGoogle Scholar
  73. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640PubMedGoogle Scholar
  74. Marie C, Deakin WJ, Viprey V, Kopcinska J, Golinowski W, Krishnan HB, Perret X, Broughton WJ (2003) Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol Plant Microbe Interact 16:743–751PubMedGoogle Scholar
  75. Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (1989) A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol 91:842–847PubMedGoogle Scholar
  76. Mazzola M, Funnell DL, Raaijmakers JM (2004) Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microb Ecol 48:338–348PubMedGoogle Scholar
  77. Messens E, Geelen D, van Montagu M, Holsters M (1991) 7,4-Dihydroxyflavanone is the major Azorhizobium nod gene-inducing factor present in Sesbania rostrata seedling exudate. Mol Plant-Microbe Interact. 4:262–267Google Scholar
  78. Micallef SA, Shiaris MP, Colon-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742PubMedGoogle Scholar
  79. Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23Google Scholar
  80. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618PubMedGoogle Scholar
  81. Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol 170:165–175PubMedGoogle Scholar
  82. Mulligan JT, Long SR (1985) Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci USA 82:6609–6613PubMedGoogle Scholar
  83. Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M, Takanashi K, Yazaki K, Aoki T, Shibuya N, Kouchi H (2011) From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis. Plant Journal 65:169–180PubMedGoogle Scholar
  84. Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153PubMedGoogle Scholar
  85. Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681PubMedGoogle Scholar
  86. Neumann G, Martinoia E (2002) Cluster roots – an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167PubMedGoogle Scholar
  87. Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Römheld V, Martinoia E (2000) Physiological aspect of cluster root function and development in phosphorus-deficient White Lupin (Lupinus albus L.). Ann Bot 85:909–919Google Scholar
  88. Novak K, Chovanec P, Skrdleta V, Kropacova M, Lisa L, Nemcova M (2002) Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.). J Exp Bot 53:1735–1745PubMedGoogle Scholar
  89. O’Hara GW, Dilworth MJ, Boonkerd N, Parkpian P (1988) Iron-deficiency specifically limits nodule development in peanut inoculated with Bradyrhizobium sp. New Phytol 108:51–57Google Scholar
  90. Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P, Mougel C (2007) Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Appl Environ Microbiol 73:913–921PubMedGoogle Scholar
  91. Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593PubMedGoogle Scholar
  92. Parke D, Rivelli M, Ornston LN (1985) Chemotaxis to aromatic and hydroaromatic acids: comparison of Bradyrhizobium japonicum and Rhizobium trifolii. J Bacteriol 163:417–422PubMedGoogle Scholar
  93. Parniske M (2005) Plant-fungal associations: cue for the branching connection. Nature 435:750–751PubMedGoogle Scholar
  94. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedGoogle Scholar
  95. Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980PubMedGoogle Scholar
  96. Phillips DA, Joseph CM, Maxwell CA (1992) Trigonelline and stachydrine released from Alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol 99:1526–1531PubMedGoogle Scholar
  97. Priha O, Grayston SJ, Pennanen T, Smolander A (1999) Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil. FEMS Microbiol Ecol 30:187–199PubMedGoogle Scholar
  98. Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592PubMedGoogle Scholar
  99. Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46:617–626PubMedGoogle Scholar
  100. Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737PubMedGoogle Scholar
  101. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedGoogle Scholar
  102. Redmond J, Batley M, Djordjevic M, Innes R, Kuempel P, Rolfe B (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635Google Scholar
  103. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843PubMedGoogle Scholar
  104. Rispail N, Hauck B, Bartholomew B, Watson AA, Nash RJ, Webb KJ (2010) Secondary metabolite profiling of the model legume Lotus japonicus during its symbiotic interaction with Mesorhizobium loti. Symbiosis 50:119–128Google Scholar
  105. Rivilla R, Sutton JM, Downie JA (1995) Rhizobium leguminosarum NodT is related to a family of outer-membrane transport proteins that includes TolC, PrtF, CyaE and AprF. Gene 161:27–31PubMedGoogle Scholar
  106. Rossen L, Johnston AW, Downie JA (1984) DNA sequence of the Rhizobium leguminosarum nodulation genes nodAB and C required for root hair curling. Nucleic Acids Res 12:9497–9508PubMedGoogle Scholar
  107. Rossen L, Shearman CA, Johnston AWB, Downie JA (1985) The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA, B, C genes. EMBO J 4:3369–3373PubMedGoogle Scholar
  108. Scheidemann P, Wetzel A (1997) Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia. Trees 11:316–321Google Scholar
  109. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69Google Scholar
  110. Smil V (1999) Nitrogen in crop production. Global Biogeochem Cycles 13:647–662Google Scholar
  111. Smit G, Puvanesarajah V, Carlson RW, Barbour WM, Stacey G (1992) Bradyrhizobium japonicum nodD1 can be specifically induced by soybean flavonoids that do not induce the nodYABCSUIJ operon. J Biol Chem 267:310–318PubMedGoogle Scholar
  112. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San DiegoGoogle Scholar
  113. Spaink HP, Wijfjes AH, Lugtenberg BJ (1995) Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. J Bacteriol 177:6276–6281PubMedGoogle Scholar
  114. Staunton S, Leprince F (1996) Effect of pH and some organic anions on the solubility of soil phosphate: implications for P bioavailability. Eur J Soil Sci 47:231–239Google Scholar
  115. Stergiopoulos I, De Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263PubMedGoogle Scholar
  116. Sugiyama A, Shitan N, Yazaki K (2007) Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. Plant Physiol 144:2000–2008PubMedGoogle Scholar
  117. Sugiyama A, Shitan N, Yazaki K (2008) Signaling from soybean roots to rhizobium: An ATP-binding cassette-type transporter mediates genistein secretion. Plant Signal Behav 3:38–40PubMedGoogle Scholar
  118. Suzuki H, Sasaki R, Ogata Y, Nakamura Y, Sakurai N, Kitajima M, Takayama H, Kanaya S, Aoki K, Shibata D, Saito K (2008) Metabolic profiling of flavonoids in Lotus japonicus using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Phytochemistry 69:99–111PubMedGoogle Scholar
  119. Takagi S (1976) Naturally occurring iron-chelating compounds in oat and rice root-washings. Soil Sci Plant Nutr 22:423–433Google Scholar
  120. Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1995) Effect of onion (Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57–59Google Scholar
  121. Tawaraya K, Hashimoto K, Wagatsuma T (1998) Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonisation by the arbuscular mycorrhizal fungus Gigaspora margarita. Mycorrhiza 8:67–70Google Scholar
  122. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648PubMedGoogle Scholar
  123. Thavarajah D, Thavarajah P, Sarker A, Vandenberg A (2009) Lentils (Lens culinaris Medikus Subspecies culinaris): a whole food for increased iron and zinc intake. J Agric Food Chem 57:5413–5419PubMedGoogle Scholar
  124. Ueda H, Sugimoto Y (2010) Vestitol as a chemical barrier against intrusion of parasitic plant Striga hermonthica into Lotus japonicus roots. Biosci Biotechnol Biochem 74:1662–1667PubMedGoogle Scholar
  125. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200PubMedGoogle Scholar
  126. Uren NC (2007) Types, amounts and possible functions of compounds released into the rhizosphere of soil-grown plants. In: Pinton R, Varanini Z, Nannipiero P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC, New York, pp 1–22Google Scholar
  127. Verma D, Hong Z (1996) Biogenesis of the peribacteroid membrane in root nodules. Trends Microbiol 4:364–368PubMedGoogle Scholar
  128. Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins – a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159PubMedGoogle Scholar
  129. Vieira RF, Cardoso EJBN, Vieira C, Cassini STA (1998) Foliar application of molybdenum in common beans. I. Nitrogenase and reductase activities in a soil of high fertility. J Plant Nutr 21:169–180Google Scholar
  130. Viprey V, Greco AD, Golinowski W, Broughton WJ, Perret X (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28:1381–1389PubMedGoogle Scholar
  131. Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481PubMedGoogle Scholar
  132. Wang J, Raman H, Zhou M, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276PubMedGoogle Scholar
  133. Weeraratna CS (1980) Studies on the molybdenum application to soybean. Beitr Trop Landwirtsch Veterinarmed 18:131–134PubMedGoogle Scholar
  134. Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Aragno M, Tabacchi R, Martinoia E (2006a) White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 29:919–927PubMedGoogle Scholar
  135. Weisskopf L, Tomasi N, Santelia D, Martinoia E, Langlade NB, Tabacchi R, Abou-Mansour E (2006b) Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage. New Phytol 171:657–668PubMedGoogle Scholar
  136. Werner D (2007) Molecular biology and ecology of the rhizobia-legume symbiosis. In: Pinton R, Varanini Z, Nannipiero P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC, New York, pp 237–266Google Scholar
  137. Werner D, Muller P (2002) Communication and efficiency in the symbiotic signal exchange. In: Heldmaier G, Werner D (eds) Environmental signal processing and adaptation. Springer, HeidelbergGoogle Scholar
  138. Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351PubMedGoogle Scholar
  139. Yanni YG (1992) Performance of chickpea, lentil and lupin nodulated with indigenous or inoculated rhizobia micropartners under nitrogen, boron, cobalt and molybdenum fertilization schedules. World J Microbiol Biotechnol 8:607–613Google Scholar
  140. Yazaki K, Sugiyama A, Morita M, Shitan N (2008) Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev 7:513–524Google Scholar
  141. Yazaki K, Shitan N, Sugiyama A, Takanashi K (2009) Cell and molecular biology of ATP-binding cassette proteins in plants. Int Rev Cell Mol Biol 276:263–299PubMedGoogle Scholar
  142. Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494PubMedGoogle Scholar
  143. Yost CK, Rochepeau P, Hynes MF (1998) Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology 144:1945–1956PubMedGoogle Scholar
  144. Zaat SAJ, Schripsema J, Wijffelman CA, Brussel AAN, Lugtenberg BJJ (1989) Analysis of the major inducers of the Rhizobium nodA promoter from Vicia sativa root exudate and their activity with different nodD genes. Plant Mol Biol 13:175–188.PubMedGoogle Scholar
  145. Zhang J, Subramanian S, Zhang Y, Yu O (2007) Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144:741–751PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Center for Rhizosphere BiologyColorado State UniversityFort CollinsUSA
  2. 2.Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan

Personalised recommendations