Discrete Time Analysis of Cognitive Radio Networks with Saturated Source of Secondary Users

  • Attahiru S. Alfa
  • Vicent Pla
  • Jorge Martinez-Bauset
  • Vicente Casares-Giner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6827)


The strategy used for sensing in a cognitive radio network affects the white space that secondary users (SUs) perceive and hence their throughput. For example, let the average time interval between consecutive sensing be fixed as τ. There are several possible ways to achieve this mean value. The SU may sense the channel at equal intervals of length τ or sense it at randomly spaced intervals with mean value τ and guided by, for example, geometric distribution, uniform distribution, etc. In the end the strategy selected does affect the available white space and throughput as well as the resources spent on sensing. In this paper we present a discrete time Markov chain model for cognitive radio network and use it to obtain the efficiency of sensing strategies. The system studied is one in which we have a saturated source of secondary users. These assumptions do not in any ways affect our results.


  1. 1.
    Alfa, A.S.: Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    FCC: Spectrum Policy Task Force Report. Tech. Rep. ET Docket 02-135, Federal Communications Commission (November 2002)Google Scholar
  3. 3.
    Geirhofer, S., Tong, L., Sadler, B.: Dynamic spectrum access in the time domain: Modeling and exploiting white space. IEEE Communications Magazine 45(5), 66–72 (2007)CrossRefGoogle Scholar
  4. 4.
    Ghasemi, A., Sousa, E.: Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs. IEEE Communications Magazine 46(4), 32–39 (2008)CrossRefGoogle Scholar
  5. 5.
    Hoang, A., Liang, Y., Wong, D., Zeng, Y., Zhang, R.: Opportunistic spectrum access for energy-constrained cognitive radios. IEEE Transactions on Wireless Communications 8(3), 1206–1211 (2009)CrossRefGoogle Scholar
  6. 6.
    Lee, W.Y., Akyildiz, I.: Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications 7(10), 3845–3857 (2008)CrossRefGoogle Scholar
  7. 7.
    Robert, S., Le Boudec, J.: New models for self-similar traffic. Performance Evaluation 30(1-2), 57–68 (1997)CrossRefGoogle Scholar
  8. 8.
    Wellens, M., Riihijärvi, J., Mähönen, P.: Empirical time and frequency domain models of spectrum use. Physical Communication 2(1-2), 10–32 (2009)CrossRefGoogle Scholar
  9. 9.
    Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials 11(1), 116–130 (2009)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Attahiru S. Alfa
    • 1
  • Vicent Pla
    • 2
  • Jorge Martinez-Bauset
    • 2
  • Vicente Casares-Giner
    • 2
  1. 1.University of ManitobaCanada
  2. 2.Universitat Politècnica de ValènciaSpain

Personalised recommendations