Efficiently Solvable Perfect Phylogeny Problems on Binary and k-State Data with Missing Values

  • Kristian Stevens
  • Bonnie Kirkpatrick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6833)

Abstract

The perfect phylogeny problem is of central importance to both evolutionary biology and population genetics. Missing values are a common occurrence in both sequence and genotype data. In their presence, the problem of finding a perfect phylogeny is NP-hard, even for binary characters [24]. We extend the utility of the perfect phylogeny by introducing new efficient algorithms for broad classes of binary and multi-state data with missing values.

Specifically, we address the rich data hypothesis introduced by Halperin and Karp [11] for the binary perfect phylogeny problem with missing data. We give an efficient algorithm for enumerating phylogenies compatible with characters satisfying the rich data hypothesis. This algorithm is useful for computing the probability of data with missing values under the coalescent model.

In addition, we use the partition intersection (PI) graph and chordal graph theory to generalize the rich data hypothesis to multi-state characters with missing values. For a bounded number of states, k, we provide a fixed parameter tractable algorithm for the k-state perfect phylogeny problem with missing data. Our approach reduces missing data problems to problems on complete data. Finally, we characterize a commonly observed condition, an m-clique in the PI graph, under which a perfect phylogeny can be found efficiently for binary characters with missing values. We evaluate our results with extensive empirical analysis using two biologically motivated generative models of character data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwala, R., Fernandez-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM Journal of Computing 23(6), 1216–1224 (1994)CrossRefMATHGoogle Scholar
  2. 2.
    Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computation, pp. 1–29. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Buneman, P.: A characterisation of rigid circuit graphs. Discrete Mathematics 9(3), 205–212 (1974)CrossRefMATHGoogle Scholar
  4. 4.
    Ding, Z., Mailund, T., Song, Y.S.: Efficient whole-genome association mapping using local phylogenies for unphased genotype data. Bioinformatics 24(19), 2215–2221 (2008)CrossRefGoogle Scholar
  5. 5.
    Dirac, G.A.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 25, 71–76 (1961)CrossRefMATHGoogle Scholar
  6. 6.
    Dress, A., Steel, M.: Convex tree realizations of partitions. Applied Math. Letters 5, 3–6 (1993)CrossRefMATHGoogle Scholar
  7. 7.
    Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. of Math. 15(3), 835–855 (1965)CrossRefMATHGoogle Scholar
  8. 8.
    Golumbic, M.C.: Algorithmic graph theory and perfect graphs. North-Holland, Amsterdam (2004)MATHGoogle Scholar
  9. 9.
    Gusfield, D.: The multi-state perfect phylogeny problem with missing and removable data: Solutions via integer-programming and chordal graph theory. In: Research in Computational Molecular Biology, pp. 236–252. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Gusfield, D., Frid, Y., Brown, D.: Integer programming formulations and computations solving phylogenetic and population genetic problems with missing or genotypic data. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 51–64. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Halperin, E., Karp, R.M.: Perfect phylogeny and haplotype assignment. In: RECOMB 2004: Proc.s of the 8th ann. Internat’l. Conf. on Comp. Mol. Bio., pp. 10–19. ACM Press, New York (2004)Google Scholar
  12. 12.
    Hudson, R.R.: Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)CrossRefGoogle Scholar
  13. 13.
    Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of perfect phylogenies when the number of character states is fixed. In: Proc. of the 6th Ann. ACM-SIAM Symp. on Disc. Alg., pp. 595–603. Society for Industrial and Applied Mathematics, Philadelphia (1995)Google Scholar
  14. 14.
    Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae 51, 45–64 (1962)MATHGoogle Scholar
  15. 15.
    Lewis, J.G., Peyton, B.W., Pothen, A.: A fast algorithm for reordering sparse matrices for parallel factorization. SIAM J. on Sci. and Stat. Comp. 10(6), 1146–1173 (1989)CrossRefMATHGoogle Scholar
  16. 16.
    Li, N., Stephens, M.: Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165(4), 2213–2233 (2003)Google Scholar
  17. 17.
    McKee, T.A., McMorris, F.R.: Topics in intersection graph theory. SIAM Monographs on Discrete Mathematics (1999)Google Scholar
  18. 18.
    McMorris, F.R., Meacham, C.A.: Partition intersection graphs. Ars Combinatoria 16B, 135–138 (1983)MATHGoogle Scholar
  19. 19.
    Meacham, C.A.: A manual method for character compatibility analysis. Taxon 30(3), 591–600 (1981)CrossRefGoogle Scholar
  20. 20.
    Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny. SIAM J. Comput. 33(3), 590–607 (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Pennington, G., Smith, C.A., Shackney, S., Schwartz, R.: Reconstructing tumor phylogenies from heterogeneous single-cell data. J. Bioinfo. and Comp. Bio. 5(2a), 407–427 (2007)CrossRefGoogle Scholar
  22. 22.
    Satya, R., Mukherjee, A.: The undirected incomplete perfect phylogeny problem. IEEE/ACM Trans. on Comp. Bio. and Bioinfo. 5(4), 618–629 (2008)CrossRefGoogle Scholar
  23. 23.
    Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)MATHGoogle Scholar
  24. 24.
    Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification, 91–116 (1992)Google Scholar
  25. 25.
    Stephens, M., Smith, N., Donnelly, P.: A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68, 978–989 (2001)CrossRefGoogle Scholar
  26. 26.
    Sze, S.H., Lu, S., Chen, J.: Integrating sample-driven and pattern-driven approaches in motif finding. Algorithms in Bioinformatics, 438–449 (2004)Google Scholar
  27. 27.
    Tarjan, R., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing 13, 566–579 (1984)CrossRefMATHGoogle Scholar
  28. 28.
    Warnow, T.J.: Tree compatibility and inferring evolutionary history. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete algorithms, SODA 1993, pp. 382–391. Society for Industrial and Applied Mathematics, Philadelphia (1993)Google Scholar
  29. 29.
    Wu, Y.: Exact computation of coalescent likelihood under the infinite sites model. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds.) ISBRA 2009. LNCS, vol. 5542, pp. 209–220. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kristian Stevens
    • 1
  • Bonnie Kirkpatrick
    • 2
  1. 1.Computer Science and Evolution and EcologyUniversity of CaliforniaDavisUSA
  2. 2.Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations