A Practical Algorithm for Ancestral Rearrangement Reconstruction

  • Jakub Kováč
  • Broňa Brejová
  • Tomáš Vinař
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6833)


Genome rearrangements are a valuable source of information about early evolution, as well as an important factor in speciation processes. Reconstruction of ancestral gene orders on a phylogeny is thus one of the crucial tools contributing to understanding of evolution of genome organization. For most models of evolution, this problem is NP-hard.

We have developed a universal method for reconstruction of ancestral gene orders by parsimony (PIVO) using an iterative local optimization procedure. Our method can be applied to different rearrangement models. Combined with a sufficently rich model, such as the double cut and join (DCJ), it can support a mixture of different chromosomal architectures in the same tree. We show that PIVO can outperform previously used steinerization framework and achieves better results on real data than previously published methods.

Datasets, reconstructed histories, and the software can be downloaded at


Travel Salesman Problem Ancestral Genome Circular Chromosome Linear Chromosome Breakpoint Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, K., Burk, L., Henagan, L., Noor, M.: A test of the chromosomal rearrangement model of speciation in Drosophila pseudoobscura. Evolution 58, 1856–1860 (2004)CrossRefGoogle Scholar
  2. 2.
    Wang, L., Warnow, T., Moret, B., Jansen, R., Raubeson, L.: Distance-based genome rearrangement phylogeny. Journal of Molecular Evolution 63, 473–483 (2006)CrossRefGoogle Scholar
  3. 3.
    Blanchette, M., Green, E., Miller, W., Haussler, D.: Reconstructing large regions of an ancestral mammalian genome in silico. Genome Research 14, 2412 (2004)CrossRefGoogle Scholar
  4. 4.
    Ma, J., Zhang, L., Suh, B., Raney, B., Burhans, R., Kent, W., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Research 16, 1557 (2006)CrossRefGoogle Scholar
  5. 5.
    Moret, B., Warnow, T.: Toward new software for computational phylogenetics. Computer 35, 55–64 (2002)CrossRefGoogle Scholar
  6. 6.
    Bourque, G., Pevzner, P.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Research 12, 26 (2002)Google Scholar
  7. 7.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)CrossRefGoogle Scholar
  8. 8.
    Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L., Warnow, T., Wyman, S.: An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanulaceae. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative Genomics, pp. 99–121. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  10. 10.
    Valach, M., Farkas, Z., Fricova, D., Kovac, J., Brejova, B., Vinar, T., Pfeiffer, I., Kucsera, J., Tomaska, L., Lang, B.F., Nosek, J.: Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Research (accepted, 2011)Google Scholar
  11. 11.
    Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp. 178–189. ACM, New York (1995)Google Scholar
  12. 12.
    Bergeron, A., Mixtacki, J., Stoye, J.: The inversion distance problem. Math. of Evolution and Phylogeny, 262–290 (2005)Google Scholar
  13. 13.
    Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. Algorithmica 13, 180–210 (1995)CrossRefzbMATHGoogle Scholar
  14. 14.
    Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology 8(5), 483–491 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Foundations of Computer Science (FOCS), pp. 581–592 (1995)Google Scholar
  16. 16.
    Bergeron, A., Mixtacki, J., Stoye, J.: HP distance via double cut and join distance. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 56–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Bergeron, A., Mixtacki, J., Stoye, J.: A new linear time algorithm to compute the genomic distance via the double cut and join distance. Theoretical Computer Science 410, 5300–5316 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sankoff, D., Blanchette, M.: The median problem for breakpoints in comparative genomics. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 251–264. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. 19.
    Caprara, A.: The reversal median problem. INFORMS Journal on Computing 15, 93 (2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Electronic Colloquium on Computational Complexity (ECCC) 5 (1998)Google Scholar
  21. 21.
    Bryant, D.: The complexity of the breakpoint median problem. Technical Report CRM-2579, CRM Universite de Montreal (1998)Google Scholar
  22. 22.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics 10, 120 (2009)CrossRefGoogle Scholar
  23. 23.
    Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Genome Informatics Workshop (GIW), pp. 25–34 (1997)Google Scholar
  24. 24.
    Siepel, A.C., Moret, B.M.E.: Finding an optimal inversion median: Experimental results. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 189–203. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Caprara, A.: On the practical solution of the reversal median problem. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 238–251. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Arndt, W., Tang, J.: Improving reversal median computation using commuting reversals and cycle information. Journal of Computational Biology 15(8), 1079–1092 (2008)CrossRefGoogle Scholar
  27. 27.
    Yue, F., Zhang, M., Tang, J.: Phylogenetic reconstruction from transpositions. BMC Genomics 9 9, S15 (2008)CrossRefGoogle Scholar
  28. 28.
    Rajan, V., Xu, A., Lin, Y., Swenson, K., Moret, B.: Heuristics for the inversion median problem. BMC Bioinformatics 11, S30 (2010)CrossRefGoogle Scholar
  29. 29.
    Adam, Z., Sankoff, D.: The ABC of MGR with DCJ. Evolutionary Bioinformatics Online 4, 69–74 (2008)Google Scholar
  30. 30.
    Xu, A.W., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 25–37. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Sankoff, D., Cedergren, R., Lapalme, G.: Frequency of insertion-deletion, transversion, and transition in the evolution of 5S ribosomal RNA. Journal of Molecular Evolution 7, 133–149 (1976)CrossRefGoogle Scholar
  32. 32.
    Moret, B., Wyman, S., Bader, D., Warnow, T., Yan, M.: A new implementation and detailed study of breakpoint analysis. In: Pacific Symposium on Biocomputing (PSB), pp. 583–594. Citeseer (2001)Google Scholar
  33. 33.
    Moret, B., Wang, L., Warnow, T., Wyman, S.: New approaches for reconstructing phylogenies from gene order data. Bioinformatics 17, S165 (2001)CrossRefGoogle Scholar
  34. 34.
    Moret, B., Tang, J., Wang, L., Warnow, T.: Steps toward accurate reconstructions of phylogenies from gene-order data. Journal of Computer and System Sciences 65, 508–525 (2002)CrossRefzbMATHGoogle Scholar
  35. 35.
    Bernt, M., Merkle, D., Middendorf, M.: Using median sets for inferring phylogenetic trees. Bioinformatics 23, e129 (2007)CrossRefGoogle Scholar
  36. 36.
    Eriksen, N.: Reversal and transposition medians. Theoretical Computer Science 374, 111–126 (2007)CrossRefzbMATHGoogle Scholar
  37. 37.
    Eriksen, N.: Median clouds and a fast transposition median solver. In: International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC), DMTCS Proceedings, pp. 373–384 (2009)Google Scholar
  38. 38.
    Moret, B., Siepel, A., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  39. 39.
    Larget, B., Kadane, J., Simon, D.: A Bayesian approach to the estimation of ancestral genome arrangements. Molecular Phylogenetics and Evolution 36, 214–223 (2005)CrossRefGoogle Scholar
  40. 40.
    Ronquist, F., Huelsenbeck, J.: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jakub Kováč
    • 1
  • Broňa Brejová
    • 1
  • Tomáš Vinař
    • 2
  1. 1.Department of Computer Science, Faculty of Mathematics, Physics, and InformaticsComenius UniversityBratislavaSlovakia
  2. 2.Department of Applied Informatics, Faculty of Mathematics, Physics, and InformaticsComenius UniversityBratislavaSlovakia

Personalised recommendations