Rules and Logic Programming for the Web

  • Adrian Paschke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6848)

Abstract

This lecture script gives an introduction to rule based knowledge representation on Web. It reviews the logical foundations of logic programming and derivation rule languages and describes existing Web rule standard languages such as RuleML, the W3C Rule Interchange Format (RIF), and the Web rule engine Prova.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krisnadhi, F.M.A.A., Hitzler, P.: Owl and rules. In: 7th International Summer School 2011 - Tutorial Lectures. LNCS, Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Ait-Kaci, H., Podelski, A.: Towards the meaning of life. In: Małuszyński, J., Wirsing, M. (eds.) PLILP 1991. LNCS, vol. 528, pp. 255–274. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  3. 3.
    Alferes, J., Damasio, C., Pereira, L.M.: Slx: a top-down derivation procedure for programs with explicit negation. In: Bruynooghe, M. (ed.) International Logic Programming Symp., pp. 424–439 (1994)Google Scholar
  4. 4.
    Alferes, J.J., Damasio, C., Pereira, L.M.: A logic programming system for non-monotonic reasoning. J. of Automated Reasoning 14(1), 93–147 (1995)CrossRefMATHGoogle Scholar
  5. 5.
    Apt, K.: Logic programming. In: Leeuwen, J.v. (ed.) Handbook of Theoretical Computer Science, vol. B, ch. 10, pp. 493–574. Elsevier, Amsterdam (1990)Google Scholar
  6. 6.
    Apt, K., Blair, H.: Logic Programming and Negation: A Survey. J. of Logic Programming 19(20), 9–71 (1994)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J. (ed.) Foundations of Deductive Databases, pp. 89–148. Morgan Kaufmann, San Francisco (1988)CrossRefGoogle Scholar
  8. 8.
    Apt, K., Emden, M.H.: Contributions to the theory of logic programming. J. of ACM 29(3), 841–862 (1982)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. of Logic Programming 19, 20, 73–148 (1994)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Baral, C., Lobo, J., Minker, J.: Generalized well-founded semantics for logic programs. In: Stickel, M.E. (ed.) International Conference on Automated Deduction. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Baral, C., Lobo, J., Minker, J.: Generalized disjunctive well-founded semantics for logic programs. Annals of Math and Artificial Intelligence 11(5), 89–132 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Baral, C., Subrahmanian, V.S.: Dualities between alternative semantics for logic programming and non-monotonic reasoning. In: Int. Workshop of Logic Programming and Non-Monotonic Reasoning, pp. 69–86. MIT Press, Cambridge (1991)Google Scholar
  13. 13.
    Beeri, C., Ramakrishnan, R.: On the power of magic. The Journal of Logic Programming 10, 255–299 (1991)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bidoit, N., Legay, P.: Well!: An evaluation procedure for all logic programs. In: Int. Conf. on Database Theory, pp. 335–348 (1990)Google Scholar
  15. 15.
    Bol, R.: Tabulated resolution for the well-founded semantics. Journal of Logic Programming 34(2), 67–109 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bol, R., Degerstedt, L.: Tabulated resolution for well founded semantics. In: Intl. Logic Programming Symposium (1993)Google Scholar
  17. 17.
    Boley, H.: Object-oriented ruleML: User-level roles, URI-grounded clauses, and order-sorted terms. In: Schröder, M., Wagner, G. (eds.) RuleML 2003. LNCS, vol. 2876, pp. 1–16. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Boley, H.: RIF RuleML Rosetta Ring: Round-Tripping the Dlex Subset of Datalog RuleML and RIF-Core. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 29–42. Springer, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-04985-9 CrossRefGoogle Scholar
  19. 19.
    Boley, H., Kifer, M.: A guide to the basic logic dialect for rule interchange on the web. IEEE Trans. on Knowl. and Data Eng. 22, 1593–1608 (2010)CrossRefGoogle Scholar
  20. 20.
    Brachman, R.J., Gilbert, P.V., Levesque, H.J.: An essential hybrid reasoning system: Knowledge and symbol level accounts for krypton. In: Int. Conf. on Artificial Inelligence (1985)Google Scholar
  21. 21.
    Brass, S., Dix, J.: Characterizations of the disjunctive wellfounded semantics: Confluent calculi and iterated gcwa. Journal of Automated Reasoning (1997)Google Scholar
  22. 22.
    Brass, S., Dix, J.: Characterizations of the disjunctive well-founded semantics. Journal of Logic Programming 34(2), 67–109 (1998)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Brass, S., Dix, J., Zukowski, U.: Transformation based bottom-up computation of the well-founded model. Theory and Practice of Logic Programming 1(5), 497–538 (2001)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Brewka, G.: Well-founded semantics for extended logic programs with dynamic preferences. Journal of Artificial Intelligence Research 4, 19–36 (1996)MathSciNetMATHGoogle Scholar
  25. 25.
    Bry, F.: Negation in logic programming: A formalization in constructive logic. In: Karagiannis, D. (ed.) IS/KI 1990 and KI-WS 1990. LNCS, vol. 474, pp. 30–46. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  26. 26.
    Bry, F.: Query evaluation in recursive databases: bottom-up and top-down reconciled. Data and Knowlege Engineering 5, 289–312 (1990)CrossRefGoogle Scholar
  27. 27.
    Chen, J., Kundu, S.: The strong semantics for logic programs. In: Proceedings of the 6th Int. Symp. on Methodologies for Intelligent Systems, Charlotte, NC (1991)Google Scholar
  28. 28.
    Chen, W., Swift, T., Warren, D.S.: Efficient top-down computation of queries under the well-founded semantics. J. of Logic Programming 24(3), 161–199 (1995)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Chen, W., Warren, D.S.: A goal-oriented approach to computing well-founded semantics. In: Intl. Conf. and Symposium on Logic Programming (1992)Google Scholar
  30. 30.
    Chen, W., Warren, D.S.: Query evaluation under the well-founded semantics. In: Proceedings of Symp. on the Principles of Database Systems (1993)Google Scholar
  31. 31.
    Chen, W.: Query evaluation in deductive databases with alternating fixpoint semantics. ACM Transactions on Database Systems 20, 239–287 (1995)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Cherchago, N., Hitzler, P., Hölldobler, S.: Decidability under the well-founded semantics. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 269–278. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data-Bases, New York, pp. 293–322 (1978)Google Scholar
  34. 34.
    Dix, J.: A framework for representing and characterizing semantics of logic programs. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference (KR 1992), pp. 591–602. Morgan Kaufmann, San Mateo (1992)Google Scholar
  35. 35.
    Dix, J.: A classification-theory of semantics of normal logic programs: Ii. weak properties. Fundamenta Informaticae XXII(3), 257–288 (1995)MathSciNetMATHGoogle Scholar
  36. 36.
    Dix, J.: Semantics of logic programs: Their intuitions and formal properties. an overview. In: Fuhrmann, A., Rott, H. (eds.) Essays on Logic in Philosophy and Artificial Intelligence, pp. 241–327. DeGruyter, Berlag-New York (1995)Google Scholar
  37. 37.
    Doets, K.: From Logic to Logic Programming. MIT Press, Camebridge (1994)MATHGoogle Scholar
  38. 38.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: A hybrid system with datalog and concept languages. In: Ardizzone, E., Sorbello, F., Gaglio, S. (eds.) AI*IA 1991. LNCS (LNAI), vol. 549, pp. 88–97. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  39. 39.
    Dung, P.M.: Negation as hypotheses: An abductive foundation for logic programming. In: 8th Int. Conf. on Logic Programming, MIT Press, Cambridge (1991)Google Scholar
  40. 40.
    Dung, P.M.: An argumentation semantics for logic programming with explicit negation. In: 10th Logic Programming Conf., MIT Press, Cambridge (1993)Google Scholar
  41. 41.
    Dung, P.M., Kanchansut, K.: A natural semantics of logic programs with negation. In: 9th Conf. on Foundations of Software Technology and Theoretical Computer Science, pp. 70–80 (1989)Google Scholar
  42. 42.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: KR 2004 (2004)Google Scholar
  43. 43.
    Emden, M.H., Kowalski, R.: The semantics of predicate logic as a programming language. JACM 23, 733–742 (1976)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Fitting, M.: A kripke-kleene semantics of logic programs. Journal of Logic Programming 4, 295–312 (1985)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Fitting, M.: Well-founded semantics, generalized. In: Int. Symposium of Logic Programming, pp. 71–84. MIT Press, San Diego (1990)Google Scholar
  46. 46.
    Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer, Heidelberg (1996)CrossRefMATHGoogle Scholar
  47. 47.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) 5th Conference on Logic Programming, pp. 1070–1080 (1988)Google Scholar
  48. 48.
    Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: ICLP 1990, pp. 579–597. MIT Press, Cambridge (1990)Google Scholar
  49. 49.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefMATHGoogle Scholar
  50. 50.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logic. In: International World Wide Web Conference, ACM, New York (2003)Google Scholar
  51. 51.
    Heymans, S., Van Nieuwenborgh, D., Hadavandi, E.: Nonmonotonic ontological and rule-based reasoning with extended conceptual logic programs. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 392–407. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  52. 52.
    Hitzler, P., Seda, A.K.: Mathematical Aspects of Logic Programming Semantics. Studies in Informatics. Chapman and Hall/CRC Press (2010)Google Scholar
  53. 53.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl: A semantic web rule language combining owl and ruleml (2004), http://www.w3.org/submission/swrl/ (accessed January 2006)
  54. 54.
    Hu, Y., Yuan, L.Y.: Extended well-founded model semantics for general logic programs. in koichi furukawa, editor, In: Int. Conf. on Logic Programming, Paris, pp. 412–425 (1991)Google Scholar
  55. 55.
    Kemp, D.B., Srivastava, D., Stuckey, P.J.: Bottom-up evaluation and query optimization of well-founded models. Theor. Comput. Sci. 146, 145–184 (1995)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Khamsi, M.A., Misane, D.: Fixed point theorems in logic programming. Ann. Math. Artif. Intell. 21(2-4), 231–243 (1997)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artifical Intelligence 2, 227–260 (1971)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Kunen, K.: Negation in logic programming. Journal of Logic Programming 4, 289–308 (1987)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Leitsch, A.: The Resolution Calculus. Springer, Heidelberg (1997)CrossRefMATHGoogle Scholar
  60. 60.
    Levy, A., Rousset, M.-C.: A representation language combining horn rules and description logics. In: European Conference on Artificial Intelligence, ECAI 1996 (1996)Google Scholar
  61. 61.
    Lifschitz, V.: Foundations of declarative logic programming. Principles of Knowledge Representation. CSLI publishers (1996)Google Scholar
  62. 62.
    Lloyd, J.W.: Foundations of logic programming, 2nd extended edn. Springer, New York (1987)CrossRefMATHGoogle Scholar
  63. 63.
    Lobo, J., Minker, J., Rajasekar, A.: Foundations of disjunctive logic programming. MIT Press, Cambridge (1992)MATHGoogle Scholar
  64. 64.
    Lonc, Z., Truszcynski, M.: On the problem of computing the well-founded semantics. Theory and Practice of Logic Programming 1(5), 591–609 (2001)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Marek, V.W.: Autoepistemic logic. Journal of the ACM 38(3), 588–619 (1991)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Journal of Artificial Intelligence 13(1-2), 27–39 (1980)CrossRefMATHGoogle Scholar
  67. 67.
    Minker, J.: An overview of nonmonotonic reasoning and logic programming. Journal of Logic Programming 17(2-4), 95–126 (1993)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Morishita, S.: An extension of van gelder’s alternating fixpoint to magic programs. Journal of Computer and System Sciences 52, 506–521 (1996)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Motik, B., Sattler, U., Studer, R.: Query answering for owl-dl with rules. Journal of Web Semantics 3(1), 41–60 (2005)CrossRefGoogle Scholar
  70. 70.
    Paschke, A.: Verification, validation, integrity of rule based policies and contracts in the semantic web. In: 2nd International Semantic Web Policy Workshop (SWPW 2006), Athens, GA, USA, November 5-9 (2006)Google Scholar
  71. 71.
    Paschke, A.: A typed hybrid description logic programming language with polymorphic order-sorted dl-typed unification for semantic web type systems. CoRR, abs/cs/0610006 (2006)Google Scholar
  72. 72.
    Paschke, A., Boley, H., Kozlenkov, A., Craig, B.L.: Rule responder: Ruleml-based agents for distributed collaboration on the pragmatic web. In: ICPW, pp. 17–28 (2007)Google Scholar
  73. 73.
    Pereira, L.M., Alferes, J.J.: Well founded semantics for logic programs with explicit negation. Proceedings of ECAI 1992 (1992)Google Scholar
  74. 74.
    Pereira, L.M., Alferes, J.J., Aparicio, J.N.: Adding closed world assumptions to well founded semantics. In: Fifth Generation Computer Systems, pp. 562–569 (1992)Google Scholar
  75. 75.
    Przymusinska, H., Przymusinski, T.C.: Weakly perfect semantics for logic programs. In: 5th International Conference and Symposium on Logic Programming, pp. 1106–1121 (1988)Google Scholar
  76. 76.
    Przymusinska, H., Przymusinski, T.C.: Weakly stratified logic programs. Fundamenta Informaticae 13, 51–65 (1990)MathSciNetMATHGoogle Scholar
  77. 77.
    Przymusinski, T.C.: Perfect model semantics. In: 5th Int. Conf. and Symp. on Logic Pro- gramming, pp. 1081–1096. MIT Press, Cambridge (1988)Google Scholar
  78. 78.
    Przymusinski, T.C.: Every logic program has a natural stratification and an iterated fixed point model. Proceedings of ACM Symp. on Principles of Database Systems, 11–21 (1989)Google Scholar
  79. 79.
    Przymusinski, T.C.: On the declarative and procedural semantics of logic programs. Journal of Automated Reasonig 5, 167–205 (1989)MathSciNetMATHGoogle Scholar
  80. 80.
    Przymusinski, T.C.: Non-monotonic reasoning vs. logic programming: A new perspective. In: Partridge, D., Wilks, Y. (eds.) The Foundations of Artifical Intelligence - A Sourcebook. Cambridge University Press, London (1990)Google Scholar
  81. 81.
    Przymusinski, T.C.: The well-founded semantics coincides with the three-valued stable semantics. Fundamenta Informaticae 13, 445–463 (1990)MathSciNetMATHGoogle Scholar
  82. 82.
    Przymusinski, T.C.: Stable semantics for disjunctive programs. New Generation Computing 9, 401–424 (1991)CrossRefMATHGoogle Scholar
  83. 83.
    Rajasekar, A., Lobo, J., Minker, J.: Weak generalized closed world assumption. Journal of Automated Reasonig 5(3), 293–307 (1989)MathSciNetCrossRefMATHGoogle Scholar
  84. 84.
    Reiter, R.: A logic for default reasoning. Journal of Artificial Intelligence 13, 81–132 (1980)MathSciNetCrossRefMATHGoogle Scholar
  85. 85.
    Riccardo, R.: On the decidability and complexity of integrating ontologies and rules. Journal of Web Semantics 3(1) (2005)Google Scholar
  86. 86.
    RIF. W3c rif: Rule interchange formant (2010), http://www.w3.org/2005/rules/ (accessed october 2010)
  87. 87.
    Robinson, J.: A machine-oriented logic based on the resolution-principle. JACM 12(1), 23–41 (1965)MathSciNetCrossRefMATHGoogle Scholar
  88. 88.
    Ross, K.: A procedural semantics for well-founded negation in logic programs. Journal of Logic Programming 13(1), 1–22 (1992)MathSciNetCrossRefMATHGoogle Scholar
  89. 89.
    Ross, K.: Modular stratification and magic sets for datalog programs with negation. Journal of the ACM 41(6), 1216–1266 (1994)MathSciNetCrossRefMATHGoogle Scholar
  90. 90.
    Sacca, D., Zaniolo, C.: Partial models and three-valued models in logic programs with negation. In: Workshop of Logic Programming and Non-Monotonic Reasoning, Washington D.C, pp. 87–104. MIT Press, Cambridge (1991)Google Scholar
  91. 91.
    Schlipf, J.: Formalizing a logic for logic programming. Annals of Mathematics and Artificial Intelligence, 5, 279–302 (1992)MathSciNetCrossRefMATHGoogle Scholar
  92. 92.
    Shen, Y.-D., Yuan, L.-Y., You, J.-H.: Slt-resolution for the well-founded semantics. Journal of Automated Reasoning 28(1), 53–97 (2002)MathSciNetCrossRefMATHGoogle Scholar
  93. 93.
    Shepherdson, J.C.: Negation in logic programming. In: Minker, J. (ed.) Foundations of Deductive Databases, pp. 19–88. Morgan Kaufmann, San Francisco (1988)CrossRefGoogle Scholar
  94. 94.
    Shepherdson, J.C.: Unsolvable problems for sldnf resolution. J. of Logic Programming, 19–22 (1991)Google Scholar
  95. 95.
    Stuckey, P.J., Sudarsham, S.: Well-founded ordered search: Goal-directed bottom-up evaluation of well-founded models. The Journal of Logic Programming 32(3), 171–205 (1997)MathSciNetCrossRefMATHGoogle Scholar
  96. 96.
    Tamaki, H., Sato, T.: Old resolution with tabulation. In: 3rd Int. Conf. on Logic Programming, London, pp. 84–98 (1986)Google Scholar
  97. 97.
    Teusink, F.: A proof procedure for extended logic programs. In: ILPS 1993. MIT Press, Cambridge (1993)Google Scholar
  98. 98.
    Ullman, J.D.: Principles of Database and Knowlegebase Systems, vol. 2. Computer Science Press, Rockville (1989)Google Scholar
  99. 99.
    Van Gelder, A.: The alternating fixpoint of logic programs with negation. In: 8th ACM SIGACT-SIGMOND-SIGART Symposium on Principles of Database Systems, pp. 1–10 (1989)Google Scholar
  100. 100.
    Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal of Computer and System Sciences 47(1), 185–221 (1993)MathSciNetCrossRefMATHGoogle Scholar
  101. 101.
    Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. JACM 38(3), 620–650 (1991)MathSciNetMATHGoogle Scholar
  102. 102.
    You, L.H., Yuan, L.Y.: Three-valued formalization of logic programming: is it needed. In: Proceedings of 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 172–182. ACM Press, New York (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Adrian Paschke
    • 1
  1. 1.AG Corporate Semantic WebFreie Universität BerlinBerlinGermany

Personalised recommendations