Introduction to Linked Data and Its Lifecycle on the Web

  • Sören Auer
  • Jens Lehmann
  • Axel-Cyrille Ngonga Ngomo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6848)


With Linked Data, a very pragmatic approach towards achieving the vision of the Semantic Web has recently gained much traction. The term Linked Data refers to a set of best practices for publishing and interlinking structured data on the Web. While many standards, methods and technologies developed within by the Semantic Web community are applicable for Linked Data, there are also a number of specific characteristics of Linked Data, which have to be considered. In this article we introduce the main concepts of Linked Data. We present an overview of the Linked Data lifecycle and discuss individual approaches as well as the state-of-the-art with regard to extraction, authoring, linking, enrichment as well as evolution of Linked Data. We conclude the chapter with a discussion of issues, limitations and further research and development challenges of Linked Data.


Resource Description Framework Link Data Description Logic Inductive Logic Programming Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Resource description framework (RDF): Concepts and abstract syntax. Technical report, W3C (February 2004)Google Scholar
  2. 2.
    Adida, B., Birbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML: Syntax and processing – a collection of attributes and processing rules for extending XHTML to support RDF. W3C Recommendation (October 2008),
  3. 3.
    Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections. In: ACM DL, pp. 85–94 (2000)Google Scholar
  4. 4.
    Agresti, A.: An Introduction to Categorical Data Analysis, 2nd edn. Wiley Interscience, Hoboken (1997)zbMATHGoogle Scholar
  5. 5.
    Amsler, R.: Research towards the development of a lexical knowledge base for natural language processing. SIGIR Forum 23, 1–2 (1989)CrossRefGoogle Scholar
  6. 6.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: Light-weight linked data publication from relational databases. In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.) Proceedings of the 18th International Conference on World Wide Web, WWW 2009, Madrid, Spain, April 20-24, pp. 621–630. ACM Press, New York (2009)Google Scholar
  8. 8.
    Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-weight linked data publication from relational databases. In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.) Proceedings of the 18th International Conference on World Wide Web, WWW 2009, Madrid, Spain, April 20-24, pp. 621–630. ACM Press, New York (2009)Google Scholar
  9. 9.
    Auer, S., Dietzold, S., Riechert, T.: OntoWiki – A tool for social, semantic collaboration. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Auer, S., Herre, H.: A versioning and evolution framework for RDF knowledge bases. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 55–69. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Augustin, C., Kuchta, B., Morgenstern, U., Riechert, T.: Datenbank und website catalogus professorum lipsiensis. ein sozialstatistisches analyseinstrumentarium und seine repräsentation im netz. In: Schattkowsky, M., Metasch, F. (eds.) Biografische Lexika im Internet. Bausteine, vol. 14, TUDPress, Verlag der Wissenschaften GmbH, Dresden (2009)Google Scholar
  12. 12.
    Aumüller, D.: Semantic Authoring and Retrieval within a Wiki (WikSAR). In: ESWC (May 2005),
  13. 13.
    Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic knowledge bases using formal concept analysis. In: IJCAI 2007, AAAI Press, Menlo Park (2007)Google Scholar
  14. 14.
    Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer w.r.t. a background terminology. J. Applied Logic 5(3), 392–420 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for record linkage. In: KDD-2003 Workshop on Data Cleaning, Record Linkage, and Object Consolidation (2003)Google Scholar
  17. 17.
    Ben-David, D., Domany, T., Tarem, A.: Enterprise data classification using semantic web technologies. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 66–81. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Berners-Lee, T.: Notation  3 (1998),
  19. 19.
    Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform resource identifiers (URI): Generic syntax. Internet RFC 2396 (August 1998)Google Scholar
  20. 20.
    Zhou, G., Su, J.: Named entity recognition using an hmm-based chunk tagger. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL 2002, Association for Computational Linguistics, Morristown (2002)Google Scholar
  21. 21.
    Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive blocking: Learning to scale up record linkage. In: ICDM 2006, pp. 87–96. IEEE, Los Alamitos (2006)Google Scholar
  22. 22.
    Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1–41 (2008)CrossRefGoogle Scholar
  23. 23.
    Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. In: Readings in Machine Learning, pp. 201–204. Morgan Kaufmann, San Francisco (1990)Google Scholar
  24. 24.
    Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. In: W3C Recommendation, W3C (February 2004),
  25. 25.
    Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD Record 35(3), 34–41 (2006)CrossRefGoogle Scholar
  27. 27.
    Coates-Stephens, S.: The analysis and acquisition of proper names for the understanding of free text. Computers and the Humanities 26, 441–456 (1992), doi:10.1007/BF00136985CrossRefGoogle Scholar
  28. 28.
    Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics. In: AAAI 1992, pp. 754–760 (1992)MathSciNetGoogle Scholar
  29. 29.
    Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and experimental results. In: KR 1994, pp. 121–133. Morgan Kaufmann, San Francisco (1994)Google Scholar
  30. 30.
    Curran, J.R., Clark, S.: Language independent ner using a maximum entropy tagger. In: Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003, vol. 4, pp. 164–167. Association for Computational Linguistics, NJ (2003)CrossRefGoogle Scholar
  31. 31.
    d’Amato, C., Fanizzi, N., Esposito, F.: A note on the evaluation of inductive concept classification procedures. In: Gangemi, A., Keizer, J., Presutti, V., Stoermer, H. (eds.) SWAP 2008. CEUR Workshop Proceedings, vol. 426, (2008)Google Scholar
  32. 32.
    Djedidi, R., Aufaure, M.-A.: ONTO-EVOAL an Ontology Evolution Approach Guided by Pattern Modeling and Quality Evaluation. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS, vol. 5956, pp. 286–305. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data Engineering 19, 1–16 (2007)CrossRefGoogle Scholar
  34. 34.
    Ermilov, T., et al.: OntoWiki Mobile - Knowledge Management in your Pocket. In: Antoniou, G., et al. (eds.) ESWC 201. LNCS, vol. 6644, Springer, Heidelberg (2011)Google Scholar
  35. 35.
    Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  36. 36.
    Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Unsupervised named-entity extraction from the web: an experimental study. Artif. Intell. 165, 91–134 (2005)CrossRefGoogle Scholar
  37. 37.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  38. 38.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description Logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  39. 39.
    Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: Hypertext transfer protocol – http/1.1 (rfc 2616). Request For Comments (1999), (accessed July 7, 2006)
  40. 40.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL 2005, pp. 363–370. Association for Computational Linguistics, Morristown (2005)CrossRefGoogle Scholar
  41. 41.
    Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology change: classification and survey. Knowledge Eng. Review 23(2), 117–152 (2008)CrossRefGoogle Scholar
  42. 42.
    Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading (1999)zbMATHGoogle Scholar
  43. 43.
    Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.: Domain-specific keyphrase extraction. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 1999, pp. 668–673. Morgan Kaufmann, San Francisco (1999)Google Scholar
  44. 44.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Glaser, H., Millard, I.C., Sung, W.-K., Lee, S., Kim, P., You, B.-J.: Research on linked data and co-reference resolution. Technical report, University of Southampton (2009)Google Scholar
  46. 46.
    Grishman, R., Yangarber, R.: Nyu: Description of the Proteus/Pet system as used for MUC-7 ST. In: MUC-7, Morgan Kaufmann, San Francisco (1998)Google Scholar
  47. 47.
    Harabagiu, S., Bejan, C.A., Morarescu, P.: Shallow semantics for relation extraction. In: IJCAI, pp. 1061–1066 (2005)Google Scholar
  48. 48.
    Heath, T., Bizer, C.: Linked Data - Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web:Theory and Technology, vol. 1. Morgan & Claypool, San Francisco (2011)Google Scholar
  49. 49.
    Heino, N., Dietzold, S., Martin, M., Auer, S.: Developing semantic web applications with the ontowiki framework. In: Pellegrini, T., Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked Media. SCI, vol. 221, pp. 61–77. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  50. 50.
    Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. Int. J. Semantic Web Inf. Syst. 5(2), 25–48 (2009)CrossRefGoogle Scholar
  51. 51.
    Horridge, M., Patel-Schneider, P.F.: Manchester syntax for OWL 1.1. In: OWLED 2008 (2008)Google Scholar
  52. 52.
    HTML 5: A vocabulary and associated APIs for HTML and XHTML. W3C Working Draft (August 2009),
  53. 53.
    Iannone, L., Palmisano, I.: An Algorithm Based on Counterfactuals for Concept Learning in the Semantic Web. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 370–379. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  54. 54.
    Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)CrossRefGoogle Scholar
  55. 55.
    Inan, A., Kantarcioglu, M., Bertino, E., Scannapieco, M.: A hybrid approach to private record linkage. In: ICDE, pp. 496–505 (2008)Google Scholar
  56. 56.
    Jacobs, I., Walsh, N.: Architecture of the world wide web. In: World Wide Web Consortium, Recommendation REC-webarch-20041215, vol. 1 (December 2004)Google Scholar
  57. 57.
    Javed, M., Abgaz, Y.M., Pahl, C.: A Pattern-Based Framework of Change Operators for Ontology Evolution. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 544–553. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  58. 58.
    Kim, S.N., Kan, M.-Y.: Re-examining automatic keyphrase extraction approaches in scientific articles. In: Proceedings of the Workshop on Multiword Expressions: Identification, Interpretation, Disambiguation and Applications, MWE 2009, pp. 9–16. Association for Computational Linguistics, Stroudsburg (2009)CrossRefGoogle Scholar
  59. 59.
    Kim, S.N., Medelyan, O., Kan, M.-Y., Baldwin, T.: Semeval-2010 task 5: Automatic keyphrase extraction from scientific articles. In: Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval 2010, pp. 21–26. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  60. 60.
    Köpcke, H., Thor, A., Rahm, E.: Comparative evaluation of entity resolution approaches with fever. In: Proc. VLDB Endow., vol. 2(2), pp. 1574–1577 (2009)Google Scholar
  61. 61.
    Krzsch, M., Vrandecic, D., Vökel, M., Haller, H., Studer, R.: Semantic wikipedia. Journal of Web Semantics 5, 251–261 (2007)CrossRefGoogle Scholar
  62. 62.
    Lehmann, J.: Hybrid Learning of Ontology Classes. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  63. 63.
    Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Lehmann, J.: Learning OWL Class Expressions. PhD thesis, University of Leipzig, PhD in Computer Science (2010)Google Scholar
  65. 65.
    Lehmann, J.: Ontology learning. In: Proceedings of Reasoning Web Summer School (2010)Google Scholar
  66. 66.
    Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. Journal of Web Semantics 9, 71–81 (2011)CrossRefGoogle Scholar
  67. 67.
    Lehmann, J., Hitzler, P.: Foundations of Refinement Operators for Description Logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  68. 68.
    Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \({\mathcal{ALC}} \) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  69. 69.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning Journal 78(1-2), 203–250 (2010)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Leuf, B., Cunningham, W.: The Wiki Way: Collaboration and Sharing on the Internet. Professional. Addison-Wesley Professional, Reading (2001)Google Scholar
  71. 71.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Technical Report 8 (1966)Google Scholar
  72. 72.
    Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive logic programming. Theory and Practice of Logic Programming 8(3), 271–300 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Lisi, F.A., Esposito, F.: Learning SHIQ+log rules for ontology evolution. In: SWAP 2008. CEUR Workshop Proceedings, vol. 426, (2008)Google Scholar
  74. 74.
    Lohmann, S., Heim, P., Auer, S., Dietzold, S., Riechert, T.: Semantifying requirements engineering the softwiki approach. In: Proceedings of the 4th International Conference on Semantic Technologies (I-SEMANTICS 2008), J.UCS, pp. 182–185 (2008)Google Scholar
  75. 75.
    Lopez, V., Uren, V., Sabou, M.R., Motta, E.: Cross ontology query answering on the semantic web: an initial evaluation. In: K-CAP 2009, pp. 17–24. ACM, New York (2009)Google Scholar
  76. 76.
    Ma, L., Sun, X., Cao, F., Wang, C., Wang, X., Kanellos, N., Wolfson, D., Pan, Y.: Semantic enhancement for enterprise data management. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 876–892. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  77. 77.
    Magiridou, M., Sahtouris, S., Christophides, V., Koubarakis, M.: RUL: A declarative update language for RDF. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 506–521. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  78. 78.
    Martin, M.: Exploring the netherlands on a semantic path. In: Auer, S., Bizer, C., Müller, C., Zhdanova, A. (eds.) Proceedings of the 1st Conference on Social Semantic Web, Leipzig, Germany. LNI, vol. 113, p. 179. Bonner Köllen Verlag (2007) ISSN 1617-5468Google Scholar
  79. 79.
    Matsuo, Y., Ishizuka, M.: Keyword Extraction From A Single Document Using Word Co-Occurrence Statistical Information. International Journal on Artificial Intelligence Tools 13(1), 157–169 (2004)CrossRefGoogle Scholar
  80. 80.
    McBride, B., Beckett, D.: Rdf/xml syntax specification. W3C Recommendation (February 2004)Google Scholar
  81. 81.
    McCusker, J., McGuinness, D.: Towards identity in linked data. In: Proceedings of OWL Experiences and Directions Seventh Annual Workshop (2010)Google Scholar
  82. 82.
    Moats, R.: Urn syntax. Internet RFC 2141 (May 1997)Google Scholar
  83. 83.
    Nadeau, D.: Semi-Supervised Named Entity Recognition: Learning to Recognize 100 Entity Types with Little Supervision. PhD thesis, University of Ottawa (2007)Google Scholar
  84. 84.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Linguisticae Investigationes 30(1), 3–26 (2007)CrossRefGoogle Scholar
  85. 85.
    Nadeau, D., Turney, P., Matwin, S.: Unsupervised named-entity recognition: Generating gazetteers and resolving ambiguity, pp. 266–277 (2006)Google Scholar
  86. 86.
    Nguyen, D.P.T., Matsuo, Y., Ishizuka, M.: Relation extraction from wikipedia using subtree mining. In: AAAI, pp. 1414–1420 (2007)Google Scholar
  87. 87.
    Nguyen, T., Kan, M.-Y.: Keyphrase Extraction, pp. 317–326. Scientific Publications, Singapore (2007)Google Scholar
  88. 88.
    Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  89. 89.
    Noy, N.F., Klein, M.C.A.: Ontology Evolution: Not the Same as Schema Evolution. Knowl. Inf. Syst. 6(4), 428–440 (2004)CrossRefGoogle Scholar
  90. 90.
    Oren, E.: SemperWiki: A Semantic Personal Wiki. In: Decker, S., Park, J., Quan, D., Sauermann, L. (eds.) Proc. of Semantic Desktop Workshop at the ISWC, Galway, Ireland, November 6, vol. 175 (2005)Google Scholar
  91. 91.
    Pantel, P., Pennacchiotti, M.: Espresso: Leveraging generic patterns for automatically harvesting semantic relations. In: ACL, pp. 113–120. ACL Press (2006)Google Scholar
  92. 92.
    Park, Y., Byrd, R.J., Boguraev, B.K.: Automatic glossary extraction: beyond terminology identification. In: Proceedings of the 19th International Conference on Computational Linguistics, COLING 2002, vol. 1, pp. 1–7. Association for Computational Linguistics, USA (2002)Google Scholar
  93. 93.
    Pasca, M., Lin, D., Bigham, J., Lifchits, A., Jain, A.: Organizing and searching the world wide web of facts - step one: the one-million fact extraction challenge. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 2, pp. 1400–1405. AAAI Press, Menlo Park (2006)Google Scholar
  94. 94.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language - Semantics and Abstract Syntax. W3c:rec, W3C ( February 10, 2004),
  95. 95.
    Rahm, E.: Schema Matching and Mapping. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  96. 96.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10, 334–350 (2001)CrossRefzbMATHGoogle Scholar
  97. 97.
    Raimond, Y., Sutton, C., Sandler, M.: Automatic interlinking of music datasets on the semantic web. In: 1st Workshop about Linked Data on the Web (2008)Google Scholar
  98. 98.
    Riechert, T., Lauenroth, K., Lehmann, J., Auer, S.: Towards semantic based requirements engineering. In: Proceedings of the 7th International Conference on Knowledge Management, I-KNOW (2007)Google Scholar
  99. 99.
    Riechert, T., Morgenstern, U., Auer, S., Tramp, S., Martin, M.: Knowledge engineering for historians on the example of the catalogus professorum lipsiensis. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 225–240. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  100. 100.
    Rieß, C., Heino, N., Tramp, S., Auer, S.: EvoPat – pattern-based evolution and refactoring of RDF knowledge bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 647–662. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  101. 101.
    Rosenfeld, M., Fernández, A., Díaz, A.: Semantic Wiki Refactoring. A strategy to assist Semantic Wiki evolution. In: Proceedings of the Fifth Workshop on Semantic Wikis (SemWiki 2010), co-located with 7th European Semantic Web Conference, ESWC 2010 (2010)Google Scholar
  102. 102.
    Rudolph, S.: Exploring relational structures via FLE. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  103. 103.
    Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr, T., Auer, S., Sequeda, J., Ezzat, A.: A survey of current approaches for mapping of relational databases to rdf (January 2009)Google Scholar
  104. 104.
    Sampson, G.: How fully does a machine-usable dictionary cover english text. Literary and Linguistic Computing 4(1) (1989)Google Scholar
  105. 105.
    Sauermann, L., Cyganiak, R.: Cool uris for the semantic web. W3C Interest Group Note (December 2008)Google Scholar
  106. 106.
    Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management. In: Proceedings of the 1st International Workshop on Semantic Technologies in Collaborative Applications (STICA) (2006)Google Scholar
  107. 107.
    Scharffe, F., Liu, Y., Zhou, C.: Rdf-ai: an architecture for rdf datasets matching, fusion and interlink. In: Proc. IJCAI 2009 IR-KR Workshop (2009)Google Scholar
  108. 108.
    Sertkaya, B.: OntocomP system description. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009, Oxford, UK, July 27-30. CEUR Workshop Proceedings, vol. 477, (2009)Google Scholar
  109. 109.
    Shvaiko, P., Euzenat Ten, J.: challenges for ontology matching. Technical report (August 1, 2008)Google Scholar
  110. 110.
    Souzis, A.: Building a Semantic Wiki. IEEE Intelligent Systems 20(5), 87–91 (2005)CrossRefGoogle Scholar
  111. 111.
    Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-Driven Ontology Evolution Management. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, p. 285. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  112. 112.
    Thielen, C.: An approach to proper name tagging for german. In: Proceedings of the EACL 1995 SIGDAT Workshop (1995)Google Scholar
  113. 113.
    Tramp, S., Frischmuth, P., Ermilov, T., Auer, S.: Weaving a social data web with semantic pingback. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 135–149. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  114. 114.
    Tramp, S., Heino, N., Auer, S., Frischmuth, P.: RDFauthor: Employing rDFa for collaborative knowledge engineering. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 90–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  115. 115.
    Turney, P.D.: Coherent keyphrase extraction via web mining. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 434–439. Morgan Kaufmann, San Francisco (2003)Google Scholar
  116. 116.
    Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning with webPIE: Calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  117. 117.
    Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic OWL ontology refinement. In: Web Intelligence, pp. 454–460. IEEE, Los Alamitos (2008)Google Scholar
  118. 118.
    Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning Disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  119. 119.
    Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and Maintaining Links on the Web of Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  120. 120.
    Walker, D., Amsler, R.: The use of machine-readable dictionaries in sublanguage analysis. Analysing Language in Restricted Domains (1986)Google Scholar
  121. 121.
    Wang, G., Yu, Y., Zhu, H.: PORE: Positive-Only Relation Extraction from Wikipedia Text. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 580–594. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  122. 122.
    Watanabe, H., Muggleton, S.: Can ILP Be Applied to Large Datasets? In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 249–256. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  123. 123.
    Winkler, W.: The state of record linkage and current research problems. Technical report, Statistical Research Division, U.S. Bureau of the Census (1999)Google Scholar
  124. 124.
    Winkler, W.: Overview of record linkage and current research directions. Technical report, Bureau of the Census - Research Report Series (2006)Google Scholar
  125. 125.
    Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In: Proceedings of the seventeenth conference on Hypertext and hypermedia, HYPERTEXT 2006, pp. 111–114. ACM, New York (2006)CrossRefGoogle Scholar
  126. 126.
    Yan, Y., Okazaki, N., Matsuo, Y., Yang, Z., Ishizuka, M.: Unsupervised relation extraction by mining wikipedia texts using information from the web. In: ACL 2009, pp. 1021–1029 (2009)Google Scholar
  127. 127.
    Zhou, G., Su, J.: Named entity recognition using an hmm-based chunk tagger. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL 2002, Association for Computational Linguistics, Morristown (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sören Auer
    • 1
  • Jens Lehmann
    • 1
  • Axel-Cyrille Ngonga Ngomo
    • 1
  1. 1.AKSW, Institut für InformatikUniversität LeipzigLeipzigGermany

Personalised recommendations