LocalRank - Neighborhood-Based, Fast Computation of Tag Recommendations

  • Marius Kubatz
  • Fatih Gedikli
  • Dietmar Jannach
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 85)

Abstract

On many modern Web platforms users can annotate the available online resources with freely-chosen tags. This Social Tagging data can then be used for information organization or retrieval purposes. Tag recommenders in that context are designed to help the online user in the tagging process and suggest appropriate tags for resources with the purpose to increase the tagging quality. In recent years, different algorithms have been proposed to generate tag recommendations given the ternary relationships between users, resources, and tags. Many of these algorithms however suffer from scalability and performance problems, including the popular FolkRank algorithm. In this work, we propose a neighborhood-based tag recommendation algorithm called LocalRank, which in contrast to previous graph-based algorithms only considers a small part of the user-resource-tag graph. An analysis of the algorithm on a popular social bookmarking data set reveals that the recommendation accuracy is on a par with or slightly better than FolkRank while at the same time recommendations can be generated instantaneously using a compact in-memory representation.

Keywords

recommender systems collaborative filtering social tagging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems - An Introduction. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  2. 2.
    Sen, S., Harper, F.M., LaPitz, A., Riedl, J.: The quest for quality tags. In: Proc. ACM GROUP 2007, Sanibel Island, Florida, USA, pp. 361–370 (2007)Google Scholar
  3. 3.
    Begelman, G., Keller, P., Smadja, F.: Automated tag clustering: Improving search and exploration in the tag space. In: Proc. Collaborative Web Tagging Workshop at WWW 2006, Edinburgh, Scotland (2006)Google Scholar
  4. 4.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks 30(1-7), 107–117 (1998)Google Scholar
  6. 6.
    Rendle, S., Balby Marinho, L., Nanopoulos, A., Lars, S.T.: Learning optimal ranking with tensor factorization for tag recommendation. In: Proc. ACM SIGKDD 2009, Paris, France, pp. 727–736 (2009)Google Scholar
  7. 7.
    Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: A unified framework for providing recommendations in social tagging systems based on ternary semantic analysis. IEEE Trans. Knowl. Data. En. 22, 179–192 (2010)CrossRefGoogle Scholar
  8. 8.
    Krestel, R., Fankhauser, P., Nejdl, W.: Latent dirichlet allocation for tag recommendation. In: Proc. ACM RecSys 2009, New York, USA, pp. 61–68 (2009)Google Scholar
  9. 9.
    Hu, M., Lim, E.P., Jiang, J.: A probabilistic approach to personalized tag recommendation. In: Proc. IEEE SocialCom 2010, Minneapolis, MN, USA, pp. 33–40 (2010)Google Scholar
  10. 10.
    Bundschus, M., Yu, S., Tresp, V., Rettinger, A., Dejori, M., Kriegel, H.P.: Hierarchical bayesian models for collaborative tagging systems. In: Proc. IEEE ICDM 2009, pp. 728–733 (2009)Google Scholar
  11. 11.
    Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Hybrid tag recommendation for social annotation systems. In: Proc. ACM CIKM, Toronto, pp. 829–838 (2010)Google Scholar
  12. 12.
    Chirita, P.A., Costache, S., Nejdl, W., Handschuh, S.: P-tag: Large scale automatic generation of personalized annotation tags for the web. In: Proc. WWW 2007, Banff, Alberta, Canada, pp. 845–854 (2007)Google Scholar
  13. 13.
    Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W.C., Giles, C.L.: Real-time automatic tag recommendation. In: Proc. SIGIR 2008, Singapore, pp. 515–522 (2008)Google Scholar
  14. 14.
    Jäschke, R., Marinho, L., Hotho, A., Lars, S.T., Gerd, S.: Tag recommendations in social bookmarking systems. AI Commun. 21, 231–247 (2008)Google Scholar
  15. 15.
    Jäschke, R., Marinho, L.B., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)Google Scholar
  17. 17.
    Rendle, S., Lars, S.T.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proc. ACM WSDM 2010, New York, USA, pp. 81–90 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marius Kubatz
    • 1
  • Fatih Gedikli
    • 1
  • Dietmar Jannach
    • 1
  1. 1.Technische Universität DortmundDortmundGermany

Personalised recommendations