Quantitative Refinement for Weighted Modal Transition Systems

  • Sebastian S. Bauer
  • Uli Fahrenberg
  • Line Juhl
  • Kim G. Larsen
  • Axel Legay
  • Claus Thrane
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6907)


Specification theories as a tool in the development process of component-based software systems have recently attracted a considerable attention. Current specification theories are however qualitative in nature and hence fragile and unsuited for modern software systems. We propose the first specification theory which allows to capture quantitative aspects during the refinement and implementation process.


reducing complexity of design modal specifications quantitative reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Software Eng. 35(2), 258–273 (2009)CrossRefGoogle Scholar
  2. 2.
    de Alfaro, L., Henzinger, T.: Interface-based design. In: Broy, M., Grünbauer, J., Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 195, pp. 83–104. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bauer, S.S., Juhl, L., Larsen, K.G., Legay, A., Srba, J.: Extending modal transition systems with structured labels (submitted, 2011)Google Scholar
  4. 4.
    Beneš, N., Křetínský, J., Larsen, K.G., Srba, J.: Checking Thorough Refinement on Modal Transition Systems Is EXPTIME-Complete. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 112–126. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Synchronous and Bidirectional Component Interfaces. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 414–427. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    STREP COMBEST (COMponent-Based Embedded Systems design Techniques), http://www.combest.eu/home/
  7. 7.
    Condon, A.: The complexity of stochastic games. Information and Computation 96(2), 203–224 (1992)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fahrenberg, U., Larsen, K.G., Thrane, C.: A quantitative characterization of weighted Kripke structures in temporal logic. Computing and Informatics 29(6+), 1311–1324 (2010)MathSciNetGoogle Scholar
  9. 9.
    Fahrenberg, U., Thrane, C., Larsen, K.G.: Distances for weighted transition systems: Games and properties. In: Proc. QAPL 2011, Electronic Proceedings in Theoretical Computer Science (to be published, 2011)Google Scholar
  10. 10.
    Juhl, L., Larsen, K.G., Srba, J.: Modal transition systems with weight intervals. Journal of Logic and Algebraic Programming (to be published, 2011)Google Scholar
  11. 11.
    Larsen, K.G., Fahrenberg, U., Thrane, C.: Metrics for weighted transition systems: Axiomatization and complexity. Theoretical Computer Science (2011), doi:10.1016/j.tcs.2011.04.003Google Scholar
  12. 12.
    Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 232–246. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Lynch, N., Tuttle, M.R.: An introduction to input/output automata. CWI-Quarterly 2(3) (1989)Google Scholar
  14. 14.
    Nyman, U.: Modal Transition Systems as the Basis for Interface Theories and Product Lines. PhD thesis, Aalborg University, Department of Computer Science (September 2008)Google Scholar
  15. 15.
    Raclet, J.-B.: Residual for component specifications. Electr. Notes in Theor. Comput. Sci. 215, 93–110 (2008)CrossRefGoogle Scholar
  16. 16.
    Sifakis, J.: A vision for computer science – the system perspective. Central European Journal of Computer Science 1(1), 108–116 (2011)CrossRefGoogle Scholar
  17. 17.
    SPEEDS (SPEculative and Exploratory Design in Systems Engineering), http://www.speeds.eu.com/
  18. 18.
    Thrane, C., Fahrenberg, U., Larsen, K.G.: Quantitative simulations of weighted transition systems. Journal of Logic and Algebraic Programming 79(7), 689–703 (2010)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Zwick, U., Paterson, M.: The complexity of mean payoff games. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 1–10. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2011

Authors and Affiliations

  • Sebastian S. Bauer
    • 1
  • Uli Fahrenberg
    • 2
  • Line Juhl
    • 3
  • Kim G. Larsen
    • 3
  • Axel Legay
    • 2
  • Claus Thrane
    • 3
  1. 1.Ludwig-Maximilians-Universität MünchenGermany
  2. 2.Irisa/INRIA RennesFrance
  3. 3.Aalborg UniversityDenmark

Personalised recommendations