Linear Problem Kernels for Planar Graph Problems with Small Distance Property

  • Jianxin Wang
  • Yongjie Yang
  • Jiong Guo
  • Jianer Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6907)


Recently, various linear problem kernels for NP-hard planar graph problems have been achieved, finally resulting in a meta-theorem for classification of problems admitting linear kernels. Almost all of these results are based on a so-called region decomposition technique. In this paper, we introduce a simple partition of the vertex set to analyze kernels for planar graph problems which admit the distance property with small constants. Without introducing new reduction rules, this vertex partition directly leads to improved kernel sizes for several problems. Moreover, we derive new kernelization algorithms for Connected Vertex Cover, Edge Dominating Set, and Maximum Triangle Packing problems, further improving the kernel size upper bounds for these problems.


Planar Graph Vertex Cover Linear Kernel Kernel Size Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) Kernelization. In: FOCS 2009, pp. 629–638. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  4. 4.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and ids. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  6. 6.
    Gu, Q., Imani, N.: Connectivity is not a limit for kernelization: Planar connected dominating set. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 26–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  8. 8.
    Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Guo, J., Niedermeier, R., Wernicke, S.: Fixed-parameter tractability results for full-degree spanning tree and its dual. Networks 56(2), 116–130 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Lokshtanov, D., Mnich, M., Saurabh, S.: Linear kernel for planar connected dominating set. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 281–290. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Luo, W., Wang, J., Feng, Q., Guo, J., Chen, J.: An improved kernel for planar connected dominating set. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 70–81. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Moser, H.: A problem kernelization for graph packing. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 401–412. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Moser, H., Sikdar, S.: The parameterized complexity of the induced matching problem. Discrete Applied Mathematics 157(4), 715–727 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Prieto, E.: Systematic Kernelization in FPT Algorithm Design. Ph.D. thesis, Department of Computer Science, University of Newcastle, Australia (2005)Google Scholar
  15. 15.
    Privadarsini, P., Hemalatha, T.: Connected vertex cover in 2-connected planar graph with maximum degree 4 is NP-complete. International Journal of Mathematical, Physical and Engineering Sciences 2(1), 51–54 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2011

Authors and Affiliations

  • Jianxin Wang
    • 1
  • Yongjie Yang
    • 1
  • Jiong Guo
    • 2
  • Jianer Chen
    • 3
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaP.R. China
  2. 2.Universität des SaarlandesSaarbrückenGermany
  3. 3.Department of Computer Science and EngineeringTexas A&M UniversityUSA

Personalised recommendations